The rising role of natural killer cells in patients with malignant hematological disorders and in recipients of hematopoietic stem cell transplantation

Khalid Ahmed Al-Anazi*

Published: 01 October, 2019 | Volume 3 - Issue 1 | Pages: 023-027

Natural killer (NK) cells, the third population of lymphoid cells, comprise 5%-25% of peripheral blood (PB) lymphocytes and represent the first line of defense against infections and tumors [1-7]. They can be derived from: bone marrow, PB, cryopreserved umbilical cord blood (UCB), human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs), and various cell lines such as NK-92 and KHYG-1 [1]. NK cells; which have been divided into cytotoxic, tolerant, and regulatory subsets; are classified into: (1) naïve CD56 bright CD 16 dim CD 3 dim cells, (2) mature CD56 dim CD16 bright CD3 dim cells, and (3) lymphoid tissue-resident CD69+/CXCR6+ NK cells [1,2,8-11]. Although NK cells have been traditionally considered as part of the innate immune system, they have recently been shown to exhibit many of the features associated with adaptive immunity [8,12]. The functions of NK cells which are influenced by several cytokines include: elimination of infected cells, destruction of cancer cells, reducing the incidence of graft versus host disease (GVHD) following hematopoietic stem cell transplantation (HSCT), and regulation of pregnancy outcome [10,11,13]. 

Read Full Article HTML DOI: 10.29328/journal.jsctt.1001015 Cite this Article Read Full Article PDF


  1. Mehta RS, Randolph B, Daher M, Rezvani K. NK cell therapy for hematologic malignancies. Int J Hematol. 2018; 107: 262-270. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29383623
  2. Crinier A, Milpied P, Escalière B, Piperoglou C, Galluso J, et al. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity. 2018; 49: 971-986. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30413361
  3. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The broad spectrum of human natural killer cell diversity. Immunity. 2017; 47: 820-833. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29166586
  4. Orr MT, Lanier LL. Natural killer cell education and tolerance. Cell. 2010; 142: 847-856. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20850008
  5. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018; 9: 1869. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30150991
  6. van Erp EA, van Kampen MR, van Kasteren PB, de Wit J. Viral infection of human natural killer cells. Viruses. 2019; 11: 243. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466310/
  7. Pittari G, Filippini P, Gentilcore G, Grivel JC, Rutella S. Revving up natural killer cells and cytokine-induced killer cells against hematological malignancies. Front Immunol. 2015; 6: 230. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26029215
  8. Handgretinger R, Lang P, André MC. Exploitation of natural killer cells for the treatment of acute leukemia. Blood. 2016; 127: 3341-3349. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27207791
  9. Robertson MJ. Role of chemokines in the biology of natural killer cells. J Leukoc Biol. 2002; 71: 173-183. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11818437
  10. Maghazachi AA. Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol. 2010; 341: 37-58. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20369317
  11. Wu Y, Tian Z, Wei H. Developmental and functional control of natural killer cells by cytokines. Front Immunol. 2017; 8: 930. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28824650
  12. Tesi B, Schlums H, Cichocki F, Bryceson YT. Epigenetic regulation of adaptive NK cell diversification. Trends Immunol. 2016; 37(7): 451-461. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27160662
  13. Chiossone L, Vacca P, Orecchia P, Croxatto D, Damonte P, et al. In vivo generation of decidual natural killer cells from resident hematopoietic progenitors. Haematologica. 2014; 99: 448-57. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24179150
  14. Mavers M, Bertaina A. High-risk leukemia: past, present, and future role of NK cells. J Immunol Res. 2018; 2018: 1586905. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29850617
  15. Ferlazzo G, Morandi B. Cross-talks between natural killer cells and distinct subsets of dendritic cells. Front Immunol. 2014; 5: 159. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989561/
  16. Moretta A. Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol. 2002; 2: 957-964. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12461568
  17. Sanabria MX, Vargas-Inchaustegui DA, Xin L, Soong L. Role of natural killer cells in modulating dendritic cell responses to Leishmania amazonensis infection. Infect Immun. 2008; 76: 5100-5109. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18794295
  18. Van Elssen CH, Oth T, Germeraad WT, Bos GM, Vanderlocht J. Natural killer cells: the secret weapon in dendritic cell vaccination strategies. Clin Cancer Res. 2014; 20:1095-1103. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24590885
  19. Harizi H. Reciprocal crosstalk between dendritic cells and natural killer cells under the effects of PGE2 in immunity and immunopathology. Cell Mol Immunol. 2013; 10: 213-221. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23524652
  20. Calmeiro J, Carrascal M, Gomes C, Falcão A, Cruz MT, et al. Heighlighting the role of DC-NK cell interplay in immunobiology and immunotherapy. In: Dendritic cells. Edited by: Chapoval SP. Intech Open 2018.
  21. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med. 2002; 195: 327-333. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11828007
  22. Piccioli D, Sbrana S, Melandri E, Valiante NM. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med. 2002; 195(3): 335-341. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11828008
  23. Galland S, Vuille J, Martin P, Letovanec I, Caignard A, et al. Tumor-derived mesenchymal stem cells use distinct mechanisms to block the activity of natural killer cell subsets. Cell Rep. 2017; 20: 2891-2905. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28930684
  24. Najar M, Fayyad-Kazan M, Merimi M, Burny A, Bron D, et al. Mesenchymal stromal cells and natural killer cells: a complex story of love and hate. Curr Stem Cell Res Ther. 2019; 14: 14-21. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30207245
  25. Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, et al. Mesenchymal stromal cells of the bone marrow and natural killer cells: cell interactions and cross modulation. J Cell Commun Signal. 2018; 12: 673-688. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29350342
  26. Thomas H, Jäger M, Mauel K, Brandau S, Lask S, et al. Interaction with mesenchymal stem cells provokes natural killer cells for enhanced IL-12/IL-18-induced interferon-gamma secretion. Mediators Inflamm. 2014; 2014: 143463. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24876666
  27. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006; 24: 74-85. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16099998
  28. Merker M, Salzmann-Manrique E, Katzki V, Huenecke S, Bremm M, et al. Clearance of hematologic malignancies by allogeneic cytokine-induced killer cell or donor lymphocyte infusions. Biol Blood Marrow Transplant. 2019; 25: 1281-1292. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30878607
  29. Chan YLT, Zuo J, Inman C, Croft W, Begum J, et al. NK cells produce high levels of IL-10 early after allogeneic stem cell transplantation and suppress development of acute GVHD. Eur J Immunol. 2018; 48: 316-329. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28944953
  30. Carlsten M, Korde N, Kotecha R, Reger R, Bor S, et al. Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK Cells in patients with myeloma. Clin Cancer Res. 2016; 22: 5211-5222. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27307594
  31. Gabriel IH, Sergeant R, Szydlo R, Apperley JF, DeLavallade H, et al. Interaction between KIR3DS1 and HLA-Bw4 predicts for progression-free survival after autologous stem cell transplantation in patients with multiple myeloma. Blood. 2010; 116: 2033-2039. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20562327
  32. Benson DM Jr, Hofmeister CC, Padmanabhan S, Suvannasankha A, Jagannath S, et al. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood 2012; 120: 4324-4333. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23033266
  33. Hoteit R, Bazarbachi A, Antar A, Salem Z, Shammaa D, et al. KIR genotype distribution among patients with multiple myeloma: Higher prevalence of KIR 2DS4 and KIR 2DS5 genes. Meta Gene 2014; 2: 730-736. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25606456
  34. Petri RM, Hackel A, Hahnel K, Dumitru CA, Bruderek K, et al. Activated tissue-resident mesenchymal stromal cells regulate natural killer cell immune and tissue-regenerative function. Stem Cell Rep. 2017; 9: 985-998. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28781075
  35. Pittari G, Vago L, Festuccia M, Bonini C, Mudawi D, et al. Restoring natural killer cell immunity against multiple myeloma in the era of new drugs. Front Immunol. 2017; 8: 1444. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682004/
  36. Shah N, Li L, McCarty J, Kaur I, Yvon E, et al. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br J Haematol. 2017; 177: 457-466. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28295190
  37. Kröger N, Shaw B, Iacobelli S, Zabelina T, Peggs K, et al; Clinical Trial Committee of the British Society of Blood and Marrow Transplantation and the German Cooperative Transplant Group. Comparison between antithymocyte globulin and alemtuzumab and the possible impact of KIR-ligand mismatch after dose-reduced conditioning and unrelated stem cell transplantation in patients with multiple myeloma. Br J Haematol. 2005; 129: 631-643. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15916686
  38. Shi J, Tricot G, Szmania S, Rosen N, Garg TK, et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br J Haematol. 2008; 143: 641-653. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18950462
  39. Simonetta F, Alvarez M, Negrin RS. Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation. Front Immunol. 2017; 8:465. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28487696
  40. Cruz CR, Bollard CM. T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect. Haematologica. 2015; 100(6): 709-719. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26034113
  41. Yang XY, Zeng H, Chen FP. Cytokine-induced killer cells: a novel immunotherapy strategy for leukemia. Oncol Lett. 2015; 9: 535-541. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301482/
  42. Mavers M, Bertaina A. High-risk leukemia: past, present, and future role of NK cells. J Immunol Res. 2018; 2018: 1586905. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29850617
  43. Hattori N, Nakamaki T. Natural killer immunotherapy for minimal residual disease eradication following allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia. Int J Mol Sci. 2019; 20: E2057. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31027331
  44. Chouaib S, Pittari G, Nanbakhsh A, El Ayoubi H, Amsellem S, et al. Improving the outcome of leukemia by natural killer cell-based immunotherapeutic strategies. Front Immunol. 2014; 5: 95. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956082/
  45. Shah NN, Baird K, Delbrook CP, Fleisher TA, Kohler ME, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood 2015; 125: 784-792. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25452614
  46. Chen YB, Efebera YA, Johnston L, Ball ED, Avigan D, et al. Increased Foxp3+Helios+ regulatory T cells and decreased acute graft-versus-host disease after allogeneic bone marrow transplantation in patients receiving sirolimus and RGI-2001, an activator of invariant natural killer T cells. Biol Blood Marrow Transplant. 2017; 23: 625-634. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28104514
  47. Lupo KB, Matosevic S. Natural killer cells as allogeneic effectors in adoptive cancer immunotherapy. Cancers (Basel). 2019; 11: E769. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31163679
  48. Du J, Paz K, Thangavelu G, Schneidawind D, Baker J, et al. Invariant natural killer T cells ameliorate murine chronic GVHD by expanding donor regulatory T cells. Blood. 2017; 129: 3121-3125. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28416503
  49. Sun W, Wang Y, East JE, Kimball AS, Tkaczuk K, et al. Invariant natural killer T cells generated from human adult hematopoietic stem-progenitor cells are poly-functional. Cytokine. 2015; 72: 48-57. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25569376
  50. Rettinger E, Huenecke S, Bonig H, Merker M, Jarisch A, et al. Interleukin-15-activated cytokine-induced killer cells may sustain remission in leukemia patients after allogeneic stem cell transplantation: feasibility, safety and first insights on efficacy. Haematologica. 2016; 101: e153-6. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004389/
  51. Russo A, Oliveira G, Berglund S, Greco R, Gambacorta V, et al. NK cell recovery after haploidentical HSCT with posttransplant cyclophosphamide: dynamics and clinical implications. Blood. 2018; 131(2): 247-262. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28986344
  52. Gill S, Olson JA, Negrin RS. Natural killer cells in allogeneic transplantation: effect on engraftment, graft- versus-tumor, and graft-versus-host responses. Biol Blood Marrow Transplant. 2009; 15: 765-776. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19539207
  53. Herrera L, Salcedo JM, Santos S, Vesga MÁ, Borrego F, et al. OP9 feeder cells are superior to M2-10B4 cells for the generation of mature and functional natural killer cells from umbilical cord hematopoietic progenitors. Front Immunol. 2017; 8: 755. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28713379
  54. Bassani B, Baci D, Gallazzi M, Poggi A, Bruno A, et al. Natural killer cells as key players of tumor progression and angiogenesis: old and novel tools to divert their pro-tumor activities into otent anti-tumor effects. Cancers (Basel) 2019; 11(4). pii: E461. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30939820
  55. Veluchamy JP, Kok N, van der Vliet HJ, Verheul HMW, de Gruijl TD, et al. The rise of allogeneic natural killer cells as a platform for cancer immunotherapy: recent innovations and future developments. Front Immunol. 2017; 8: 631. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28620386
  56. Hu W, Wang G, Huang D, Sui M, Xu Y. Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front Immunol. 2019; 10: 1205. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554437/
  57. Liu LL, Béziat V, Oei VYS, Pfefferle A, Schaffer M, et al. Ex vivo expanded adaptive NK cells effectively kill primary acute lymphoblastic leukemia cells. Cancer Immunol Res. 2017; 5: 654-665. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28637877
  58. MacFarlane AW, Jillab M, Smith MR, Katherine Alpaugh R, Cole ME, et al. Natural killer cell dysfunction in chronic lymphocytic leukemia is associated with loss of the mature KIR3DL1+ subset. Blood. 2014; 124: 3318.
  59. Chen CI, Koschmieder S, Kerstiens L, Schemionek M, Altvater B, et al. NK cells are dysfunctional in human chronic myelogenous leukemia before and on imatinib treatment and in BCR-ABL-positive mice. Leukemia. 2012; 26(3): 465-474. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21904381
  60. Chiu J, Ernst DM, Keating A. Acquired natural killer cell dysfunction in the tumor microenvironment of classic Hodgkin lymphoma. Front Immunol. 2018; 9: 267. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29491867
  61. Kohrt HE, Thielens A, Marabelle A, Sagiv-Barfi I, Sola C, et al. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies. Blood. 2014; 123(5): 678-686. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24326534a

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More