Review Article

Natural killer cells in patients with hematologic malignancies, solid tumors and in recipients of hematopoietic stem cell transplantation

Al-Anazi KA*, Al-Jasser AM and Al-Anazi WK

Published: 09 December, 2019 | Volume 3 - Issue 1 | Pages: 031-055

Natural killer cells represent the first line of defense against infections and tumors and can be derived from various sources including: bone marrow, peripheral blood, specific types of human stem cells, and certain cell lines. The functions of natural killer cells are influenced by: several cytokines, activating and inhibitory receptors, as well as other immune cells such as dendritic cells and mesenchymal stem cells.

Natural killer cells are attractive candidates for adoptive cellular therapy in patients with hematologic malignancies and solid tumors in addition to recipients of various forms of hematopoietic stem cell transplantation as they enhance antitumor effects without causing graft versus host disease. Several clinical trials have shown safety and efficacy of natural killer cell products obtained from autologous as well as allogeneic sources and used in conjunction with cytotoxic chemotherapy, monoclonal antibodies and novel agents.

The following review, which includes extensive literature review on several aspects of natural killer cells, will give particular attention to: the rising role of natural killer cell therapies in patients with malignant hematological disorders, solid tumors and in recipients of stem cell therapies; preparation and manufacture of natural killer cell products; challenges facing the utilization of this form of cellular therapy including evolution of resistance; and maneuvers that can be employed to enhance the efficacy of natural killer cell therapies as well as suggested solutions to resolve the remaining challenges.

Read Full Article HTML DOI: 10.29328/journal.jsctt.1001017 Cite this Article Read Full Article PDF


Natural killer cells; Hematologic malignancies; Hematopoietic stem cell transplantation; Immune reconstitution; Graft versus tumor effect; Graft versus host disease


  1. Mehta RS, Randolph B, Daher M, Rezvani K. NK cell therapy for hematologic malignancies. Int J Hematol. 2018; 107: 262-270. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29383623
  2. Handgretinger R, Lang P, André MC. Exploitation of natural killer cells for the treatment of acute leukemia. Blood. 2016; 127: 3341-3349. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27207791
  3. See DM, Khemka P, Sahl L, Bui T, Tilles JG. The role of natural killer cells in viral infections. Scand J Immunol. 1997; 46: 217-224. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9315107
  4. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The broad spectrum of human natural killer cell diversity. Immunity. 2017; 47: 820-833. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29166586
  5. Crinier A, Milpied P, Escalière B, Piperoglou C, Galluso J, et al. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity. 2018; 49: 971-986. 5. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30413361
  6. Orr MT, Lanier LL. Natural killer cell education and tolerance. Cell. 2010; 142: 847-856. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20850008
  7. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018; 9: 1869. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30150991
  8. van Erp EA, van Kampen MR, van Kasteren PB, de Wit J. Viral infection of human natural killer cells. Viruses. 2019; 11: 243. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30870969
  9. Pittari G, Filippini P, Gentilcore G, Grivel JC, Rutella S. Revving up natural killer cells and cytokine-induced killer cells against hematological malignancies. Front Immunol. 2015; 6: 230. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26029215
  10. Collins PL, Cella M, Porter SI, Li S, Gurewitz GL, Hong HS, et al. Gene regulatory programs conferring phenotypic identities to human NK cells. Cell. 2019; 176: 348-360. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30595449
  11. Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med. 2015; 47: 141. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25676064
  12. Harada Y, Teraishi K, Ishii M, Ban H, Yonemitsu Y. Clinical Applications of Natural Killer Cells. In: Natural Killer Cells. 2017.
  13. Matosevic S. Viral and nonviral engineering of natural killer cells as emerging adoptive cancer immunotherapies. J Immunol Res. 2018; 2018: 4054815. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30306093
  14. Tesi B, Schlums H, Cichocki F, Bryceson YT. Epigenetic regulation of adaptive NK cell diversification. Trends Immunol. 2016; 37: 451-461. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27160662
  15. Robertson MJ. Role of chemokines in the biology of natural killer cells. J Leukoc Biol. 2002; 71: 173-183. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11818437
  16. Maghazachi AA. Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol. 2010; 341: 37-58. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20369317
  17. Wu Y, Tian Z, Wei H. Developmental and functional control of natural killer cells by cytokines. Front Immunol. 2017; 8: 930. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28824650
  18. Melsen JE, Lugthart G, Vervat C, Kielbasa SM, van der Zeeuw SAJ, et al. Human bone marrow-resident natural killer cells have a unique transcriptional profile and resemble resident memory CD8+ T cells. Front Immunol. 2018; 9: 1829. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30186282
  19. Smith DJ, Liu S, Ji S, Li B, McLaughlin J, Cheng D, et al. Genetic engineering of hematopoietic stem cells to generate invariant natural killer T cells. Proc Natl Acad Sci USA. 2015; 112: 1523-1528. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25605948
  20. Chaidos A, Patterson S, Szydlo R, Chaudhry MS, Dazzi F, et al. Graft invariant natural killer T-cell dose predicts risk of acute graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Blood. 2012; 119: 5030-5036. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22371885
  21. Mavers M, Maas-Bauer K, Negrin RS. Invariant natural killer T cells as suppressors of graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Front Immunol. 2017; 8: 900. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28824628
  22. Du J, Paz K, Thangavelu G, Schneidawind D, Baker J, Flynn R, et al. Invariant natural killer T cells ameliorate murine chronic GVHD by expanding donor regulatory T cells. Blood. 2017; 129: 3121-3125. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28416503
  23. Schneidawind D, Pierini A, Alvarez M, Pan Y, Baker J, et al. CD4+ invariant natural killer T cells protect from murine GVHD lethality through expansion of donor CD4+CD25+FoxP3+ regulatory T cells. Blood. 2014; 124: 3320-3328. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25293774
  24. Sun W, Wang Y, East JE, Kimball AS, Tkaczuk K, et al. Invariant natural killer T cells generated from human adult hematopoietic stem-progenitor cells are poly-functional. Cytokine. 2015; 72: 48-57. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25569376
  25. Beyaz S, Kim JH, Pinello L, Xifaras ME, Hu Y, et al. The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells. Nat Immunol. 2017; 18: 184-195. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27992400
  26. Merker M, Salzmann-Manrique E, Katzki V, Huenecke S, Bremm M, et al. Clearance of hematologic malignancies by allogeneic cytokine-induced killer cell or donor lymphocyte infusions. Biol Blood Marrow Transplant. 2019; 25: 1281-1292. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30878607
  27. Yang XY, Zeng H, Chen FP. Cytokine-induced killer cells: a novel immunotherapy strategy for leukemia. Oncol Lett. 2015; 9: 535-541. https://www.ncbi.nlm.nih.gov/pubmed/25621022
  28. Rettinger E, Huenecke S, Bonig H, Merker M, Jarisch A, et al. Interleukin-15-activated cytokine-induced killer cells may sustain remission in leukemia patients after allogeneic stem cell transplantation: feasibility, safety and first insights on efficacy. Haematologica. 2016; 101: 153-156. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26768688
  29. Mavers M, Bertaina A. High-risk leukemia: past, present, and future role of NK cells. J Immunol Res. 2018; 2018: 1586905. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29850617
  30. Bonanni V, Sciumè G, Santoni A, Bernardini G. Bone marrow NK cells: origin, distinctive features, and requirements for tissue localization. Front Immunol. 2019; 10: 1569. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31354722
  31. Mace EM, Orange JS. Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunol Rev. 2019; 287: 202-225. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30565241
  32. Hattori N, Nakamaki T. Natural killer immunotherapy for minimal residual disease eradication following allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia. Int J Mol Sci. 2019; 20: 2057. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31027331
  33. Chiossone L, Vacca P, Orecchia P, Croxatto D, Damonte P, Astigiano S, et al. in vivo generation of decidual natural killer cells from resident hematopoietic progenitors. Haematologica. 2014; 99: 448-457. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24179150
  34. Orange JS. Understanding natural killer cell deficiency. IG Living. 2018; 32-34.
  35. Mace EM, Orange JS. Genetic causes of human NK cell deficiency and their effect on NK cell subsets. Front Immunol. 2016; 7: 545. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27994588
  36. Vargas-Hernández A, Forbes LR. The impact of immunodeficiency on NK cell maturation and function. Curr Allergy Asthma Rep. 2019; 19: 2. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30847722
  37. Mace EM. Phosphoinositide-3-kinase signaling in human natural killer cells: new insights from primary immunodeficiency. Front Immunol. 2018; 9: 445. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29563913
  38. Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013; 132: 515-525. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23993353
  39. Shabrish S, Kelkar M, Chavan N, Desai M, Bargir U, et al. Natural killer cell degranulation defect: a cause for impaired NK-cell cytotoxicity and hyperinflammation in Fanconi anemia patients. Front Immunol. 2019; 10: 490. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30949167
  40. Ham H, Billadeau DD. Human immunodeficiency syndromes affecting human natural killer cell cytolytic activity. Front Immunol. 2014; 5: 2. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24478771
  41. Angka L, Khan ST, Kilgour MK, Xu R, Kennedy MA, et al. Dysfunctional natural killer cells in the aftermath of cancer surgery. Int J Mol Sci. 2017; 18: E1787. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28817109
  42. Guo Y, Patil NK, Luan L, Bohannon JK, Sherwood ER. The biology of natural killer cells during sepsis. Immunology. 2018; 153: 190-202. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29064085
  43. Hejazi M, Manser AR, Fröbel J, Kündgen A, Zhao X, et al. Impaired cytotoxicity associated with defective natural killer cell differentiation in myelodysplastic syndromes. Haematologica. 2015; 100: 643-652. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25682594
  44. Tamura J, Kubota K, Murakami H, Sawamura M, Matsushima T, et al. Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin Exp Immunol. 1999; 116: 28-32. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10209501
  45. Gill HS, Rutherfurd KJ, Cross ML. Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. J Clin Immunol. 2001; 21: 264-271. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11506196
  46. Chiang BL, Sheih YH, Wang LH, Liao CK, Gill HS. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. Eur J Clin Nutr. 2000; 54: 849-855. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11114680
  47. Takeda K, Okumura K. CAM and NK cells. Evid Based Complement Alternat Med. 2004; 1: 17-27.
  48. Witek-Janusek L, Albuquerque K, Chroniak KR, Chroniak C, Durazo-Arvizu R, et al. Effect of mindfulness based stress reduction on immune function, quality of life and coping in women newly diagnosed with early stage breast cancer. Brain Behav Immun. 2008; 22: 969-981. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18359186
  49. Speak AO, Te Vruchte D, Davis LC, Morgan AJ, Smith DA, et al. Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1. Blood. 2014; 123: 51-60. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24235134
  50. Sung PS, Jang JW. Natural killer cell dysfunction in hepatocellular carcinoma: pathogenesis and clinical implications. Int J Mol Sci. 2018; 19: 3648. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30463262
  51. Holder KA, Russell RS, Grant MD. Natural killer cell function and dysfunction in hepatitis C virus infection. Biomed Res Int. 2014; 2014: 903764. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25057504
  52. Caligiuri M, Murray C, Buchwald D, Levine H, Cheney P, et al. Phenotypic and functional deficiency of natural killer cells in patients with chronic fatigue syndrome. J Immunol. 1987; 139: 3306-3313. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2824604
  53. Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, et al. An historical overview: the discovery of how NK cells can kill enemies, recruit defense troops, and more. Front Immunol. 2019; 10: 1415. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31316503
  54. Poznanski SM, Ashkar AA. What defines NK cell functional fate: phenotype or metabolism? Front Immunol. 2019; 10: 1414. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31275330
  55. Huang P, Wang F, Yang Y, Lai W, Meng M, et al. Hematopoietic-specific deletion of Foxo1 promotes NK cell specification and proliferation. Front Immunol. 2019; 10: 1016. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31139183
  56. Parodi M, Raggi F, Cangelosi D, Manzini C, Balsamo M, Blengio F, et al. Hypoxia modifies the transcriptome of human NK cells, modulates their immunoregulatory profile, and influences NK cell subset migration. Front Immunol. 2018; 9: 2358. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30459756
  57. Darji A, Kaushal A, Desai N, Rajkumar S. Natural killer cells: from defense to immunotherapy in cancer. J Stem Cell Res Ther. 2018; 8: 419.
  58. Terrén I, Mikelez I, Odriozola I, Gredilla A, González J, Orrantia A, et al. Implication of interleukin-12/15/18 and ruxolitinib in the phenotype, proliferation, and polyfunctionality of human cytokine-preactivated natural killer cells. Front Immunol. 2018; 9: 737. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29713323
  59. Souza-Fonseca-Guimaraes F, Cursons J, Huntington ND. The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol. 2019; 40: 142-158. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30639050
  60. Pesce S, Squillario M, Greppi M, Loiacono F, Moretta L, et al. New miRNA signature heralds human NK cell subsets at different maturation steps: involvement of miR-146a-5p in the regulation of KIR expression. Front Immunol. 2018; 9: 2360. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30374356
  61. Grudzien M, Rapak A. Effect of natural compounds on NK cell activation. J Immunol Res. 2018; 2018: 4868417. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30671486
  62. Ravaglia G, Forti P, Maioli F, Bastagli L, Facchini A, et al. Effect of micronutrient status on natural killer cell immune function in healthy free-living subjects aged >/=90 y. Am J Clin Nutr. 2000; 71: 590-598. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10648276
  63. Kwak JH, Baek SH, Woo Y, Han JK, Kim BG, et al. Beneficial immunostimulatory effect of short-term Chlorella supplementation: enhancement of natural killer cell activity and early inflammatory response (randomized, double-blinded, placebo-controlled trial). Nutr J. 2012; 11: 53. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22849818
  64. Currier NL, Miller SC. The effect of immunization with killed tumor cells, with/without feeding of Echinacea purpurea in an erythroleukemic mouse model. J Altern Complement Med. 2002; 8: 49-58. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11890433
  65. Partearroyo T, Úbeda N, Montero A, Achón M, Varela-Moreiras G. Vitamin B (12) and folic acid imbalance modifies NK cytotoxicity, lymphocytes B and lymphoprolipheration in aged rats. Nutrients. 2013; 5: 4836-4848. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24288024
  66. Chaigne-Delalande B, Li FY, O'Connor GM, Lukacs MJ, Jiang P, et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science. 2013; 341: 186-191. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23846901
  67. Fiala M. Curcumin and omega-3 fatty acids enhance NK cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-γ production: benefits of omega-3 with curcumin against cancer. Molecules. 2015; 20: 3020-3026. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25685909
  68. Millman AC, Salman M, Dayaram YK, Connell ND, Venketaraman V. Natural killer cells, glutathione, cytokines, and innate immunity against Mycobacterium tuberculosis. J Interferon Cytokine Res. 2008; 28: 153-165. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18338948
  69. Dahlberg CI, Sarhan D, Chrobok M, Duru AD, Alici E. Natural killer cell-based therapies targeting cancer: possible strategies to gain and sustain anti-tumor activity. Front Immunol. 2015; 6: 605. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26648934
  70. Bassani B, Baci D, Gallazzi M, Poggi A, Bruno A, et al. Natural killer cells as key players of tumor progression and angiogenesis: old and novel tools to divert their pro-tumor activities into potent anti-tumor effects. Cancers (Basel). 2019; 11: 461. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30939820
  71. Veluchamy JP, Kok N, van der Vliet HJ, Verheul HMW, de Gruijl TD, et al. The rise of allogeneic natural killer cells as a platform for cancer immunotherapy: recent innovations and future developments. Front Immunol. 2017; 8: 631. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28620386
  72. Chouaib S, Pittari G, Nanbakhsh A, El Ayoubi H, Amsellem S, et al. Improving the outcome of leukemia by natural killer cell-based immunotherapeutic strategies. Front Immunol. 2014; 5: 95. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24672522
  73. Hu W, Wang G, Huang D, Sui M, Xu Y. Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front Immunol. 2019; 10: 1205. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31214177
  74. Pfeifer C, Highton AJ, Peine S, Sauter J, Schmidt AH, et al. Natural killer cell education is associated with a distinct glycolytic profile. Front Immunol. 2018; 9: 3020. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30619362
  75. O'Sullivan TE, Sun JC, Lanier LL. Natural killer cell memory. Immunity. 2015; 43: 634-645.
  76. Min-Oo G, Kamimura Y, Hendricks DW, Nabekura T, Lanier LL. Natural killer cells: walking three paths down memory lane. Trends Immunol. 2013; 34: 251-258. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23499559
  77. Cooper MA. Natural killer cells might adapt their inhibitory receptors for memory. Proc Natl Acad Sci USA. 2018; 115: 11357-11359. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30337482
  78. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008; 9: 503-510.
  79. Piccioli D, Sbrana S, Melandri E, Valiante NM. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med. 2002; 195: 335-341. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11828008
  80. Harizi H. Reciprocal crosstalk between dendritic cells and natural killer cells under the effects of PGE2 in immunity and immunopathology. Cell Mol Immunol. 2013; 10: 213-221. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23524652
  81. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med. 2002; 195: 327-333. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11828007
  82. Ferlazzo G, Morandi B. Cross-talks between natural killer cells and distinct subsets of dendritic cells. Front Immunol. 2014; 5: 159. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24782864
  83. Leno-Durán E, Muñoz-Fernández R, Olivares EG, Tirado-González I. Liaison between natural killer cells and dendritic cells in human gestation. Cell Mol Immunol. 2014; 11: 449-455. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24954224
  84. Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E. Natural-killer cells and dendritic cells: "l'union fait la force". Blood. 2005; 106: 2252-2258. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15933055
  85. Calmeiro J, Carrascal M, Gomes C, Falcão A, Cruz MT, Neves BM. Heighlighting the role of DC-NK cell interplay in immunobiology and immunotherapy. 2018.
  86. Van Elssen CH, Oth T, Germeraad WT, Bos GM, Vanderlocht J. Natural killer cells: the secret weapon in dendritic cell vaccination strategies. Clin Cancer Res. 2014; 20: 1095-1103. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24590885
  87. Sanabria MX, Vargas-Inchaustegui DA, Xin L, Soong L. Role of natural killer cells in modulating dendritic cell responses to Leishmania amazonensis infection. Infect Immun. 2008; 76: 5100-5109. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18794295
  88. Moretta A. Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol. 2002; 2: 957-964. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12461568
  89. Andoniou CE, Van Dommelen SL, Voigt V, Andrews DM, Brizard G, et al. Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nat Immunol. 2005; 6: 1011-1019. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16142239
  90. Mavilio D, Lombardo G, Kinter A, Fogli M, La Sala A, et al. Characterization of the defective interaction between a subset of natural killer cells and dendritic cells in HIV-1 infection. J Exp Med. 2006; 203: 2339-2350. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17000867
  91. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006; 107: 1484-1490. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16239427
  92. Casado JG, Tarazona R, Sanchez-Margallo FM. NK and MSCs crosstalk: the sense of immunomodulation and their sensitivity. Stem Cell Rev Rep. 2013; 9: 184-189. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23397451
  93. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008; 111: 1327-1333. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17951526
  94. Thomas H, Jäger M, Mauel K, Brandau S, Lask S, et al. Interaction with mesenchymal stem cells provokes natural killer cells for enhanced IL-12/IL-18-induced interferon-gamma secretion. Mediators Inflamm. 2014; 2014: 143463. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24876666
  95. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 2006; 24: 74-85. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16099998
  96. Galland S, Vuille J, Martin P, Letovanec I, Caignard A, Fregni G, et al. Tumor-derived mesenchymal stem cells use distinct mechanisms to block the activity of natural killer cell subsets. Cell Rep. 2017; 20: 2891-2905. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28930684
  97. Petri RM, Hackel A, Hahnel K, Dumitru CA, Bruderek K, et al. Activated tissue-resident mesenchymal stromal cells regulate natural killer cell immune and tissue-regenerative function. Stem Cell Reports. 2017; 9: 985-998. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28781075
  98. Najar M, Fayyad-Kazan M, Merimi M, Burny A, Bron D, et al. Mesenchymal stromal cells and natural killer cells: a complex story of love and hate. Curr Stem Cell Res Ther. 2019; 14: 14-21. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30207245
  99. Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L, et al. Mesenchymal stromal cells of the bone marrow and natural killer cells: cell interactions and cross modulation. J Cell Commun Signal. 2018; 12: 673-688. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29350342
  100. Yan CH, Liu QF, Wu DP, Zhang X, Xu LP, et al. Prophylactic donor lymphocyte infusion (DLI) followed by minimal residual disease and graft-versus-host disease-guided multiple DLIs could improve outcomes after allogeneic hematopoietic stem cell transplantation in patients with refractory/relapsed acute leukemia. Biol Blood Marrow Transplant. 2017; 23: 1311-1319. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28483716
  101. Villa NY, Rahman MM, McFadden G, Cogle CR. Therapeutics for graft versus-host disease: from conventional therapies to novel virotherapeutic strategies. Viruses. 2016; 8: 85. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27011200
  102. Chang YJ, Zhao XY, Huang XJ. Strategies for enhancing and preserving anti-leukemia effects without aggravating graft-versus-host disease. Front Immunol. 2018; 9: 3041. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30619371
  103. Vasu S, Geyer S, Bingman A, Auletta JJ, Jaglowski S, et al. Granulocyte colony-stimulating factor-mobilized allografts contain activated immune cell subsets associated with risk of acute and chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2016; 22: 658-668. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26743340
  104. Miller JS, Warren EH, van den Brink MR, Ritz J, Shlomchik WD, et al. NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: report from the Committee on the Biology Underlying Recurrence of Malignant Disease following Allogeneic HSCT: graft-versus-tumor/leukemia reaction. Biol Blood Marrow Transplant. 2010; 16: 565-586. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20152921
  105. Dickinson AM, Norden J, Li S, Hromadnikova I, Schmid C, et al. Graft-versus-leukemia effect following hematopoietic stem cell transplantation for leukemia. Front Immunol. 2017; 8: 496. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28638379
  106. Cruz CR, Bollard CM. T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect. Haematologica. 2015; 100: 709-719. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26034113
  107. Cooke KR, Luznik L, Sarantopoulos S, Hakim FT, Jagasia M, et al. The biology of chronic graft-versus-host Disease: a task force report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2017; 23: 211-234. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27713092
  108. Yu H, Tian Y, Wang Y, Mineishi S, Zhang Y. Dendritic cell regulation of graft-vs.-host disease: immunostimulation and tolerance. Front Immunol. 2019; 10: 93. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30774630
  109. Sairafi D, Stikvoort A, Gertow J, Mattsson J, Uhlin M. Donor cell composition and reactivity predict risk of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. J Immunol Res. 2016; 2016: 5601204. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27965986
  110. Ruzek MC, Kavanagh BF, Scaria A, Richards SM, Garman RD. Adenoviral vectors stimulate murine natural killer cell responses and demonstrate antitumor activities in the absence of transgene expression. Mol Ther. 2002; 5: 115-124. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11829518
  111. Weber G, Gerdemann U, Caruana I, Savoldo B, Hensel NF, et al. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia. 2013; 27: 1538-1547. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23528871
  112. Bertaina A, Roncarolo MG. Graft engineering and adoptive immunotherapy: new approaches to promote immune tolerance after hematopoietic stem cell transplantation. Front Immunol. 2019; 10: 1342. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31354695
  113. Kanfar S, Al-Anazi KA. Autologous graft versus host disease: an updated review. Ann Stem Cell Regenerat Med. 2018; 1: 1002.
  114. Porrata LF. Clinical evidence of autologous graft versus tumor effect. Am J Immunol. 2009; 5: 1-7. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27635143
  115. Porrata LF. Autologous graft-versus-tumor effect: reality or fiction? Adv Hematol. 2016; 2016: 5385972. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27635143
  116. Kline J, Subbiah S, Lazarus HM, Van Besien K. Autologous graft-versus-host disease: harnessing anti-tumor immunity through impaired self-tolerance. Bone Marrow Transplant. 2008; 41: 505-513. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18026144
  117. Holmberg L, Kikuchi K, Gooley TA, Adams KM, Hockenbery DM, et al. Gastrointestinal graft-versus-host disease in recipients of autologous hematopoietic stem cells: incidence, risk factors, and outcome. Biol Blood Marrow Transplant. 2006; 12: 226-234. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16443520
  118. Batra A, Cottler-Fox M, Harville T, Rhodes-Clark BS, Makhoul I, et al. Autologous graft versus host disease: an emerging complication in patients with multiple myeloma. Bone Marrow Res. 2014; 2014: 891427. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24876970
  119. Hammami MB, Talkin R, Al-Taee AM, Schoen MW, Goyal SD, et al. Autologous graft-versus-host disease of the gastrointestinal tract in patients with multiple myeloma and hematopoietic stem cell transplantation. Gastroenterology Res. 2018; 11: 52-57. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29511407
  120. Schneidawind D, Pierini A, Negrin RS. Regulatory T cells and natural killer T cells for modulation of GVHD following allogeneic hematopoietic cell transplantation. Blood 2013; 122: 3116-21. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24068494
  121. Hu LJ, Zhao XY, Yu XX, Lv M, Han TT, et al. Quantity and quality reconstitution of NKG2A+ natural killer cells are associated with graft-versus-host disease after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2019; 25: 1-11. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30142416
  122. Jiang YZ, Barrett AJ, Goldman JM, Mavroudis DA. Association of natural killer cell immune recovery with a graft-versus-leukemia effect independent of graft-versus-host disease following allogeneic bone marrow transplantation. Ann Hematol. 1997; 74: 1-6. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9031607
  123. Huenecke S, Cappel C, Esser R, Pfirrmann V, Salzmann-Manrique E, et al. Development of three different NK cell subpopulations during immune reconstitution after pediatric allogeneic hematopoietic stem cell transplantation: prognostic markers in GvHD and viral infections. Front Immunol. 2017; 8: 109. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28239380
  124. Kheav VD, Busson M, Scieux C, Peffault de Latour R, Maki G, et al. Favorable impact of natural killer cell reconstitution on chronic graft-versus-host disease and cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation. Haematologica. 2014; 99: 1860-1867. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25085354
  125. Meinhardt K, Kroeger I, Bauer R, Ganss F, Ovsiy I, et al. Identification and characterization of the specific murine NK cell subset supporting graft-versus-leukemia- and reducing graft-versus-host-effects. Oncoimmunology. 2015; 4: e981483. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25949862
  126. Kariminia A, Ivison S, Ng B, Rozmus J, Sung S, et al. CD56 bright natural killer regulatory cells in filgrastim primed donor blood or marrow products regulate chronic graft-versus-host disease: the Canadian Blood and Marrow Transplant Group randomized 0601 study results. Haematologica. 2017; 102: 1936-1946. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28935847
  127. Schneidawind D, Pierini A, Alvarez M, Pan Y, Baker J, et al. CD4+ invariant natural killer T cells protect from murine GVHD lethality through expansion of donor CD4+CD25+FoxP3+ regulatory T cells. Blood. 2014; 124: 3320-3328. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25293774
  128. Van Elssen CHMJ, Ciurea SO. NK cell therapy after hematopoietic stem cell transplantation: can we improve anti-tumor effect? Int J Hematol. 2018; 107: 151-156. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29196968
  129. Porrata LF, Gastineau DA, Padley D, Bundy K, Markovic SN. Re-infused autologous graft natural killer cells correlates with absolute lymphocyte count recovery after autologous stem cell transplantation. Leuk Lymphoma. 2003; 44: 997-1000. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12854901
  130. Huttunen P, Taskinen M, Siitonen S, Saarinen-Pihkala UM. Impact of very early CD4(+) / CD8(+) T cell counts on the occurrence of acute graft-versus-host disease and NK cell counts on outcome after pediatric allogeneic hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2015; 62: 522-528. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25417898
  131. Verheyden S, Schots R, Duquet W, Demanet C. A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. Leukemia. 2005; 19: 1446-1451. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15973456
  132. Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood. 2002; 100: 1935-1947. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12200350
  133. Gill S, Olson JA, Negrin RS. Natural killer cells in allogeneic transplantation: effect on engraftment, graft- versus-tumor, and graft-versus-host responses. Biol Blood Marrow Transplant. 2009; 15: 765-776. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19539207
  134. Whiteside TL. The natural killer (NK) cell and synergistic antitumor effects of interferon-gamma and interleukin-2. Cancer Invest. 1990; 8: 565-566. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2124947
  135. Lundqvist A, Yokoyama H, Smith A, Berg M, Childs R. Bortezomib treatment and regulatory T-cell depletion enhance the antitumor effects of adoptively infused NK cells. Blood. 2009; 113: 6120-6127. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19202127
  136. Koh CY, Ortaldo JR, Blazar BR, Bennett M, Murphy WJ. NK-cell purging of leukemia: superior antitumor effects of NK cells H2 allogeneic to the tumor and augmentation with inhibitory receptor blockade. Blood. 2003; 102: 4067-4075. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12893752
  137. Kim Y, Lee SH, Kim CJ, Lee JJ, Yu D, et al. Canine non-B, non-T NK lymphocytes have a potential antibody-dependent cellular cytotoxicity function against antibody-coated tumor cells. BMC Vet Res. 2019; 15:339. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31610784
  138. Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol. 2015; 6: 368. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26284063
  139. Seidel UJ, Schlegel P, Lang P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front Immunol. 2013; 4: 76. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23543707
  140. Lisovsky I, Kant S, Tremblay-McLean A, Isitman G, Kiani Z, et al. Differential contribution of education through KIR2DL1, KIR2DL3, and KIR3DL1 to antibody-dependent (AD) NK cell activation and ADCC. J Leukoc Biol. 2019; 105: 551-563. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30698860
  141. Lo Nigro C, Macagno M, Sangiolo D, Bertolaccini L, Aglietta M, et al. NK-mediated antibody-dependent cell-mediated cytotoxicity in solid tumors: biological evidence and clinical perspectives. Ann Transl Med. 2019; 7: 105. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31019955
  142. Hassenrück F, Knödgen E, Göckeritz E, Midda SH, Vondey V, et al. Sensitive detection of the natural killer cell-mediated cytotoxicity of anti-CD20 antibodies and its impairment by B-cell receptor pathway inhibitors. Biomed Res Int. 2018; 2018: 1023490. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29750146
  143. Li Y, Huang K, Liu L, Qu Y, Huang Y, et al. Effects of complement and serum IgG on rituximab-dependent natural killer cell-mediated cytotoxicity against Raji cells. Oncol Lett. 2019; 17: 339-347. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30655772
  144. Ernst D, Williams BA, Wang XH, Yoon N, Kim KP, et al. Humanized anti-CD123 antibody facilitates NK cell antibody-dependent cell-mediated cytotoxicity (ADCC) of Hodgkin lymphoma targets via ARF6/PLD-1. Blood Cancer J. 2019; 9: 6. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30647406
  145. Rossi LE, Avila DE, Spallanzani RG, Ziblat A, Fuertes MB, et al. Histone deacetylase inhibitors impair NK cell viability and effector functions through inhibition of activation and receptor expression. J Leukoc Biol. 2012; 91: 321-331. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22124136
  146. Tiper IV, Webb TJ. Histone deacetylase inhibitors enhance CD1d-dependent NKT cell responses to lymphoma. Cancer Immunol Immunother. 2016; 65: 1411-1421. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27614429
  147. Fiegler N, Textor S, Arnold A, Rölle A, Oehme I, et al. Downregulation of the activating NKp30 ligand B7-H6 by HDAC inhibitors impairs tumor cell recognition by NK cells. Blood. 2013; 122: 684-693. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23801635
  148. Al-Anazi WK, Al-Anazi KA. Epigenetics in myelodysplastic syndromes. J Mol Genet Med. 2019; 3: 1-17.
  149. Chahin H, Ekong B, Fandy TE. Epigenetic therapy in malignant and chronic diseases. J Pharmacogenom Pharmacoproteomics. 2013; 4: 118.
  150. Strauss J, Figg WD. Using epigenetic therapy to overcome chemotherapy resistance. Anticancer Res. 2016; 36: 1-4. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26722021
  151. Ronnekleiv-Kelly SM, Sharma A, Ahuja N. Epigenetic therapy and chemosensitization in solid malignancy. Cancer Treat Rev. 2017; 55: 200-208. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28431263
  152. Shi X, Li M, Cui M, Niu C, Xu J, et al. Epigenetic suppression of the antitumor cytotoxicity of NK cells by histone deacetylase inhibitor valproic acid. Am J Cancer Res. 2016; 6: 600-614. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27152238
  153. Ni L, Wang L, Yao C, Ni Z, Liu F, et al. The histone deacetylase inhibitor valproic acid inhibits NKG2D expression in natural killer cells through suppression of STAT3 and HDAC3. Sci Rep. 2017; 7: 45266. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28338101
  154. Greene TT, Tokuyama M, Knudsen GM, Kunz M, Lin J, et al. A Herpesviral induction of RAE-1 NKG2D ligand expression occurs through release of HDAC mediated repression. Elife. 2016; 5: e14749. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27874833
  155. Skov S, Pedersen MT, Andresen L, Straten PT, Woetmann A, et al. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res. 2005; 65: 11136-11145. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16322264
  156. Krukowski K, Eddy J, Kosik KL, Konley T, Janusek LW, et al. Glucocorticoid dysregulation of natural killer cell function through epigenetic modification. Brain Behav Immun. 2011; 25: 239-249. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20656012
  157. Berghuis D, Schilham MW, Vos HI, Santos SJ, Kloess S, et al. Histone deacetylase inhibitors enhance expression of NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis. Clin Sarcoma Res. 2012; 2: 8. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22587892
  158. Choi JW, Lee ES, Kim SY, Park SI, Oh S, et al. Cytotoxic effects of ex vivo-expanded natural killer cell-enriched lymphocytes (MYJ1633) against liver cancer. BMC Cancer. 2019; 19: 817. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31426763
  159. Zhu H, Kaufman DS. An improved method to produce clinical-scale natural killer cells from human pluripotent stem cells. Methods Mol Biol. 2019; 2048: 107-119. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31396935
  160. Min B, Choi H, Her JH, Jung MY, Kim HJ, et al. Optimization of large-scale expansion and cryopreservation of human natural killer cells for anti-tumor therapy. Immune Netw. 2018; 18: 31. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30181919
  161. Oyer JL, Igarashi RY, Kulikowski AR, Colosimo DA, Solh MM, et al. Generation of highly cytotoxic natural killer cells for treatment of acute myelogenous leukemia using a feeder-free, particle-based approach. Biol Blood Marrow Transplant. 2015; 21: 632-639. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25576425
  162. Xie S, Wu Z, Niu L, Chen J, Ma Y, et al. Preparation of highly activated natural killer cells for advanced lung cancer therapy. Onco Targets Ther. 2019; 12: 5077-5086. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31308687
  163. Schmidt S, Tramsen L, Rais B, Ullrich E, Lehrnbecher T. Natural killer cells as a therapeutic tool for infectious diseases - current status and future perspectives. Oncotarget 2018; 9: 20891-20907. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29755697
  164. Lupo KB, Matosevic S. Natural killer cells as allogeneic effectors in adoptive cancer immunotherapy. Cancers (Basel) 2019; 11: 769. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31163679
  165. Hu W, Wang G, Huang D, Sui M, Xu Y. Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front Immunol. 2019; 10: 1205. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31214177
  166. Zhang J, Zheng H, Diao Y. Natural killer cells and current applications of chimeric antigen receptor-modified NK-92 cells in tumor immunotherapy. Int J Mol Sci. 2019; 20: 317. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30646574
  167. Miller JS. Therapeutic applications: natural killer cells in the clinic. Hematology Am Soc Hematol Educ Program. 2013; 2013: 247-253. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24319187
  168. Bachanova V, Miller JS. NK cells in therapy of cancer. Crit Rev Oncog. 2014; 19: 133-141. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24941379
  169. Al-Anazi KA. The rising role of natural killer cells in patients with malignant hematological disorders and in recipients of hematopoietic stem cell transplantation. J Stem Cell Ther Transplant. 2019; 3: 23-27.
  170. Chan YLT, Zuo J, Inman C, Croft W, Begum J, et al. NK cells produce high levels of IL-10 early after allogeneic stem cell transplantation and suppress development of acute GVHD. Eur J Immunol. 2018; 48: 316-329. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28944953
  171. Carlsten M, Korde N, Kotecha R, Reger R, Bor S, et al. Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK Cells in patients with myeloma. Clin Cancer Res. 2016; 22: 5211-5222. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27307594
  172. Gabriel IH, Sergeant R, Szydlo R, Apperley JF, DeLavallade H, et al. Interaction between KIR3DS1 and HLA-Bw4 predicts for progression-free survival after autologous stem cell transplantation in patients with multiple myeloma. Blood. 2010; 116: 2033-2039. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20562327
  173. Rezvani K, Rouce R, Liu E, Shpall E. Engineering natural killer cells for cancer immunotherapy. Mol Ther. 2017; 25: 1769-1781. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28668320
  174. Hoteit R, Bazarbachi A, Antar A, Salem Z, Shammaa D, et al. KIR genotype distribution among patients with multiple myeloma: Higher prevalence of KIR 2DS4 and KIR 2DS5 genes. Meta Gene. 2014; 2: 730-736. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25606456
  175. Pittari G, Vago L, Festuccia M, Bonini C, Mudawi D, et al. Restoring natural killer cell immunity against multiple myeloma in the era of new drugs. Front Immunol. 2017; 8: 1444. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29163516
  176. Benson DM Jr, Hofmeister CC, Padmanabhan S, Suvannasankha A, Jagannath S, et al. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood. 2012; 120: 4324-4333. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23033266
  177. Mahaweni NM, Bos GMJ, Mitsiades CS, Tilanus MGJ, Wieten L. Daratumumab augments alloreactive natural killer cell cytotoxicity towards CD38+ multiple myeloma cell lines in a biochemical context mimicking tumour microenvironment conditions. Cancer Immunol Immunother. 2018; 67: 861-872. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29500635
  178. Mahaweni NM, Ehlers FAI, Bos GMJ, Wieten L. Tuning natural killer cell anti-multiple myeloma reactivity by targeting inhibitory signaling via KIR and NKG2A. Front Immunol. 2018; 9: 2848. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30564241
  179. Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, et al. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood. 2005; 105: 251-258. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15328155
  180. Sarkar S, van Gelder M, Noort W, Xu Y, Rouschop KM, et al. Optimal selection of natural killer cells to kill myeloma: the role of HLA-E and NKG2A. Cancer Immunol Immunother. 2015; 64: 951-63. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25920521
  181. Gao M, Gao L, Yang G, Tao Y, Hou J, et al. Myeloma cells resistance to NK cell lysis mainly involves an HLA class I-dependent mechanism. Acta Biochim Biophys Sin (Shanghai). 2014; 46: 597-604. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24850305
  182. Mohyuddin GR, Qazilbash MH. The therapeutic role of natural killer cells in multiple myeloma. Adv Cell Gene Ther. 2019; 2: 49.
  183. Szmania S, Lapteva N, Garg T, Greenway A, Lingo J, et al. ex vivo-expanded natural killer cells demonstrate robust proliferation in vivo in high-risk relapsed multiple myeloma patients. J Immunother. 2015; 38: 24-36. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25415285
  184. Shah N, Li L, McCarty J, Kaur I, Yvon E, et al. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br J Haematol. 2017; 177: 457-466. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28295190
  185. Kröger N, Shaw B, Iacobelli S, Zabelina T, Peggs K, et al. Clinical Trial Committee of the British Society of Blood and Marrow Transplantation and the German Cooperative Transplant Group. Comparison between antithymocyte globulin and alemtuzumab and the possible impact of KIR-ligand mismatch after dose-reduced conditioning and unrelated stem cell transplantation in patients with multiple myeloma. Br J Haematol. 2005; 129: 631-643. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15916686
  186. Shi J, Tricot G, Szmania S, Rosen N, Garg TK, et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br J Haematol. 2008; 143: 641-653. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18950462
  187. Nijhof IS, Lammerts van Bueren JJ, van Kessel B, Andre P, Morel Y, et al. Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide. Haematologica. 2015; 100: 263-268. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25510242
  188. Nahi H, Chrobok M, Gran C, Lund J, Gruber A, et al. Infectious complications and NK cell depletion following daratumumab treatment of multiple myeloma. PLoS One. 2019; 14: e0211927. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30759167
  189. Besson L, Charrier E, Karlin L, Allatif O, Marçais A, et al. One-year follow-up of natural killer cell activity in multiple myeloma patients treated with adjuvant lenalidomide therapy. Front Immunol. 2018; 9: 704. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29706958
  190. Yang G, Gao M, Zhang Y, Kong Y, Gao L, et al. Carfilzomib enhances natural killer cell-mediated lysis of myeloma linked with decreasing expression of HLA class I. Oncotarget. 2015; 6: 26982-26994. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26323098
  191. Korde N, Carlsten M, Lee MJ, Minter A, Tan E, et al. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma. Haematologica. 2014; 99: 81-83. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24658821
  192. Wang Y, Lv B, Li K, Zhang A, Liu H. Adjuvant immunotherapy of dendritic cells and cytokine-induced killer cells is safe and enhances chemotherapy efficacy for multiple myeloma in China: a meta-analysis of clinical trials. Drug Des Devel Ther. 2017; 11: 3245-3256. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29180849
  193. Rueff J, Medinger M, Heim D, Passweg J, Stern M. Lymphocyte subset recovery and outcome after autologous hematopoietic stem cell transplantation for plasma cell myeloma. Biol Blood Marrow Transplant. 2014; 20: 896-899. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24631739
  194. Skerget M, Skopec B, Zver S. Repopulation of lymphocytes and natural killer cells on day 15 following first autologous stem cell transplantation in myeloma patients correlates with the number of reinfused lymphocytes and natural killer T cells in the autologous graft. Blood. 2016; 128: 5820.
  195. Dulphy N, Chrétien AS, Khaznadar Z, Fauriat C, Nanbakhsh A, et al. Underground adaptation to a hostile environment: acute myeloid leukemia vs. natural killer cells. Front Immunol. 2016; 7: 94. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27014273
  196. Stringaris K, Sekine T, Khoder A, Alsuliman A, Razzaghi B, et al. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica. 2014; 99: 836-847. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24488563
  197. Marin V, Pizzitola I, Agostoni V, Attianese GM, Finney H, et al. Cytokine-induced killer cells for cell therapy of acute myeloid leukemia: improvement of their immune activity by expression of CD33-specific chimeric receptors. Haematologica. 2010; 95: 2144-2152. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20713459
  198. Skaik Y, Vahlsing S, Goudeva L, Eiz-Vesper B, Battermann A, et al. Secreted β3-integrin enhances natural killer cell activity against acute myeloid leukemia cells. PLoS One. 2014; 9: e98936. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24919191
  199. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016; 8: 357. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27655849
  200. Bao X, Wang M, Zhou H, Zhang H, Wu X, et al. Donor killer immunoglobulin-like receptor profile Bx1 imparts a negative effect and centromeric B-specific gene motifs render a positive effect on standard-risk acute myeloid leukemia/myelodysplastic syndrome patient survival after unrelated donor hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016; 22: 232-239. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26371372
  201. Yahng SA, Jeon YW, Yoon JH, Shin SH, Lee SE, et al. Negative impact of unidirectional host-versus-graft killer cell immunoglobulin-like receptor ligand mismatch on transplantation outcomes after unmanipulated haploidentical peripheral blood stem cell transplantation for acute myeloid leukemia. Biol Blood Marrow Transplant. 2016; 22: 316-323. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26415557
  202. Parisi S, Lecciso M, Ocadlikova D, Salvestrini V, Ciciarello M, et al. The more, the better: "do the right thing" for natural killer immunotherapy in acute myeloid leukemia. Front Immunol. 2017; 8: 1330. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29097997
  203. Holubova M, Leba M, Gmucova H, Caputo VS, Jindra P, et al. Improving the clinical application of natural killer cells by modulating signals signal from target cells. Int J Mol Sci. 2019; 20: E3472. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31311121
  204. Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007; 110: 433-440. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17371948
  205. Cooley S, McCullar V, Wangen R, Bergemann TL, Spellman S, et al. KIR reconstitution is altered by T cells in the graft and correlates with clinical outcomes after unrelated donor transplantation. Blood. 2005; 106: 4370-4376. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16131567
  206. Bachanova V, Cooley S, Defor TE, Verneris MR, Zhang B, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood. 2014; 123: 3855-3863. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24719405
  207. Cooley S, He F, Bachanova V, Vercellotti GM, DeFor TE, et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 2019; 3: 1970-1980. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31266741
  208. Jardine L, Hambleton S, Bigley V, Pagan S, Wang XN, et al. Sensitizing primary acute lymphoblastic leukemia to natural killer cell recognition by induction of NKG2D ligands. Leuk Lymphoma. 2013; 54: 167-173. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22742576
  209. Fei F, Lim M, George AA, Kirzner J, Lee D, et al. Cytotoxicity of CD56-positive lymphocytes against autologous B-cell precursor acute lymphoblastic leukemia cells. Leukemia 2015; 29: 788-797. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25134458
  210. Mizia-Malarz A, Sobol-Milejska G. NK cells as possible prognostic factor in childhood acute lymphoblastic leukemia. Dis Markers. 2019; 2019: 3596983. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30719179
  211. Sullivan EM, Jeha S, Kang G, Cheng C, Rooney B, et al. NK cell genotype and phenotype at diagnosis of acute lymphoblastic leukemia correlate with postinduction residual disease. Clin Cancer Res. 2014; 20: 5986-5994. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25281696
  212. Torelli GF, Peragine N, Raponi S, Pagliara D, De Propris MS, et al. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells. Haematologica. 2014; 99: 1248-1254. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24658822
  213. Lelaidier M, Dìaz-Rodriguez Y, Cordeau M, Cordeiro P, Haddad E, et al. TRAIL-mediated killing of acute lymphoblastic leukemia by plasmacytoid dendritic cell-activated natural killer cells. Oncotarget. 2015; 6: 29440-29455. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26320191
  214. Brentjens RJ. Cellular therapies in acute lymphoblastic leukemia. Curr Opin Mol Ther. 2009; 11: 375-382. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19649982
  215. Liu LL, Béziat V, Oei VYS, Pfefferle A, Schaffer M, et al. ex vivo expanded adaptive NK cells effectively kill primary acute lymphoblastic leukemia cells. Cancer Immunol Res. 2017; 5: 654-665. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28637877
  216. Lee HR, Baek KH. Role of natural killer cells for immunotherapy in chronic myeloid leukemia. Oncol Rep. 2019; 41: 2625-2635. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30896812
  217. Chen CI, Koschmieder S, Kerstiens L, Schemionek M, Altvater B, et al. NK cells are dysfunctional in human chronic myelogenous leukemia before and on imatinib treatment and in BCR-ABL-positive mice. Leukemia. 2012; 26: 465-474. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21904381
  218. Ilander M, Olsson-Strömberg U, Schlums H, Guilhot J, Brück O, et al. Increased proportion of mature NK cells is associated with successful imatinib discontinuation in chronic myeloid leukemia. Leukemia. 2017; 31: 1108-1116. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27890936
  219. Reiners KS, Topolar D, Henke A, Simhadri VR, Kessler J, et al. Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood 2013; 121: 3658-3665. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23509156
  220. MacFarlane AW, Jillab M, Smith MR, Katherine Alpaugh R, et al. Natural killer cell dysfunction in chronic lymphocytic leukemia is associated with loss of the mature KIR3DL1+ subset. Blood. 2014; 124: 3318.
  221. McWilliams EM, Mele JM, Cheney C, Timmerman EA, Fiazuddin F, et al. Therapeutic CD94+/NKG2A blockade improves natural killer cell dysfunction in chronic lymphocytic leukemia. Oncoimmunology. 2016; 5: e1226720. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27853650
  222. Klanova M, Oestergaard MZ, Trněný M, Hiddemann W, et al. Prognostic impact of natural killer cell count in follicular lymphoma and diffuse large B-cell lymphoma patients treated with immunochemotherapy. Clin Cancer Res. 2019; 25: 4634-4643. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31053601
  223. Decaup E, Rossi C, Gravelle P, Laurent C, Bordenave J, et al. A tridimensional model for NK cell-mediated ADCC of follicular lymphoma. Front Immunol. 2019; 10: 1943. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31475004
  224. Sarkar S, Sabhachandani P, Ravi D, Potdar S, Purvey S, et al. Dynamic analysis of human natural killer cell response at single-cell resolution in B-cell non-Hodgkin lymphoma. Front Immunol. 2017; 8: 1736. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29312292
  225. Boulassel MR, Al Qarni Z, Burney I, Khan H, Al-Zubaidi A, et al. Levels of regulatory T cells and invariant natural killer cells and their associations with regulatory B cells in patients with non-Hodgkin lymphoma. Mol Clin Oncol. 2018; 9: 677-682. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30546901
  226. Hus I, Bojarska-Junak A, Kamińska M, Dobrzyńska-Rutkowska A, et al. Imbalance in circulatory iNKT, Th17 and T regulatory cell frequencies in patients with B-cell non-Hodgkin's lymphoma. Oncol Lett. 2017; 14: 7957-7964. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29250184
  227. Kohrt HE, Thielens A, Marabelle A, Sagiv-Barfi I, Sola C, et al. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies. Blood. 2014; 123: 678-86. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24326534
  228. Vari F, Arpon D, Keane C, Hertzberg MS, Talaulikar D, et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood 2018; 131: 1809-1819. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29449276
  229. Alinari L. Awakening exhausted NK cells in lymphoma. Blood. 2019; 131: 1768-1769. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29674350
  230. Chiu J, Ernst DM, Keating A. Acquired natural killer cell dysfunction in the tumor microenvironment of classic Hodgkin lymphoma. Front Immunol. 2018; 9: 267. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29491867
  231. Aldinucci D, Borghese C, Casagrande N. Formation of the immunosuppressive microenvironment of classic Hodgkin lymphoma and therapeutic approaches to counter it. Int J Mol Sci. 2019; 20: 2416. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31096713
  232. Simonetta F, Alvarez M, Negrin RS. Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation. Front Immunol. 2017; 8: 465. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28487696
  233. Palmer JM, Rajasekaran K, Thakar MS, Malarkannan S. Clinical relevance of natural killer cells following hematopoietic stem cell transplantation. J Cancer. 2013; 4: 25-35. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23386902
  234. Cooley S, Parham P, Miller JS. Strategies to activate NK cells to prevent relapse and induce remission following hematopoietic stem cell transplantation. Blood. 2018; 131: 1053-1062. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29358179
  235. Pical-Izard C, Crocchiolo R, Granjeaud S, Kochbati E, Just-Landi S, et al. Reconstitution of natural killer cells in HLA-matched HSCT after reduced-intensity conditioning: impact on clinical outcome. Biol Blood Marrow Transplant. 2015; 21: 429-39. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25579888
  236. Hattori N, Saito B, Sasaki Y, Shimada S, Murai S, et al. Status of natural killer cell recovery in day 21 bone marrow after allogeneic hematopoietic stem cell transplantation predicts clinical outcome. Biol Blood Marrow Transplant. 2018; 24: 1841-1847. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29753837
  237. Shah NN, Baird K, Delbrook CP, Fleisher TA, Kohler ME, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood. 2015; 125: 784-792. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25452614
  238. Chen YB, Efebera YA, Johnston L, Ball ED, Avigan D, et al. Increased Foxp3+Helios+regulatory T cells and decreased acute graft-versus-host disease after allogeneic bone marrow transplantation in patients receiving sirolimus and RGI-2001, an activator of invariant natural killer T cells. Biol Blood Marrow Transplant. 2017; 23: 625-634. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28104514
  239. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002; 295: 2097-2100. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11896281
  240. Björklund AT, Schaffer M, Fauriat C, Ringdén O, Remberger M, et al. NK cells expressing inhibitory KIR for non-self-ligands remain tolerant in HLA-matched sibling stem cell transplantation. Blood. 2010; 115: 2686-2694. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20097883
  241. Haas P, Loiseau P, Tamouza R, Cayuela JM, Moins-Teisserenc H, et al. NK-cell education is shaped by donor HLA genotype after unrelated allogeneic hematopoietic stem cell transplantation. Blood. 2011 20; 117: 1021-1029. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21045194
  242. Zhou H, Bao X, Wu X, Tang X, Wang M, et al. Donor selection for killer immunoglobulin-like receptors B haplotype of the centromeric motifs can improve the outcome after HLA-identical sibling hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014; 20: 98-105. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24516895
  243. Miller JS, Cooley S, Parham P, Farag SS, Verneris MR, et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood. 2007; 109: 5058-5061. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17317850
  244. Russo A, Oliveira G, Berglund S, Greco R, Gambacorta V, et al. NK cell recovery after haploidentical HSCT with posttransplant cyclophosphamide: dynamics and clinical implications. Blood. 2018; 131: 247-262. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28986344
  245. Wang Y, Wu DP, Liu QF, Xu LP, Liu KY, et al. Low-dose post-transplant cyclophosphamide and anti-thymocyte globulin as an effective strategy for GVHD prevention in haploidentical patients. J Hematol Oncol. 2019; 12: 88. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31481121
  246. Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010; 28: 955-959. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20085940
  247. Stern M, Passweg JR, Meyer-Monard S, Esser R, Tonn T, et al. Pre-emptive immunotherapy with purified natural killer cells after haploidentical SCT: a prospective phase II study in two centers. Bone Marrow Transplant. 2013; 48: 433-438. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22941380
  248. Nguyen S, Dhedin N, Vernant JP, Kuentz M, Al Jijakli A, et al. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood. 2005; 105: 4135-4142. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15687235
  249. Chang YJ, Zhao XY, Huang XJ. Immune reconstitution after haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014; 20: 440-449. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24315844
  250. Ciurea SO, Schafer JR, Bassett R, Denman CJ, Cao K, et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood. 2017; 130: 1857-1868. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28835441
  251. Jang JE, Hwang DY, Chung H, Kim SJ, Eom JI, et al. Early cytomegalovirus reactivation and expansion of CD56bright CD16+dim/-DNAM1+ natural killer cells are associated with antileukemia effect after haploidentical stem cell transplantation in acute leukemia. Biol Blood Marrow Transplant. 2019; 25: 2070-2078.
  252. Ando T, Suzuki T, Ishiyama Y, Koyama S, Tachibana T, et al. Impact of cytomegalovirus reactivation and natural killer reconstitution on outcomes after allogeneic hematopoietic stem cell transplantation: a single-center analysis. Biol Blood Marrow Transplant. 2019
  253. Locatelli F, Pende D, Falco M, Della Chiesa M, Moretta A. NK cells mediate a crucial graft-versus-leukemia effect in haploidentical-HSCT to cure high-risk acute leukemia. Trends Immunol. 2018; 39: 577-590. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29793748
  254. Casorati G, de Lalla C, Dellabona P. Invariant natural killer T cells reconstitution and the control of leukemia relapse in pediatric haploidentical hematopoietic stem cell transplantation. Oncoimmunology. 2012; 1: 355-357. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22737613
  255. Sobecks RM, Wang T, Askar M, Gallagher MM, Haagenson M, et al. Impact of KIR and HLA genotypes on outcomes after reduced-intensity conditioning hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2015; 21: 1589-1596. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25960307
  256. Baron F, Petersdorf EW, Gooley T, Sandmaier BM, Malkki M, et al. What is the role for donor natural killer cells after nonmyeloablative conditioning? Biol Blood Marrow Transplant. 2009; 15: 580-588. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19361750
  257. Barrow AD, Edeling MA, Trifonov V, Luo J, Goyal P, et al. Natural killer cells control tumor growth by sensing a growth factor. Cell. 2018; 172: 534-548. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29275861
  258. Dyck L, Lynch L. New job for NK cells: architects of the tumor microenvironment. Immunity. 2018; 48: 9-11. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29343443
  259. Böttcher JP, Bonavita E, Chakravarty P, Blees H, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018; 172: 1022-1037.e14. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29429633
  260. Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med. 2015; 47: e141. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25676064
  261. Mehta RS, Rezvani K. Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol. 2018; 9: 283. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29497427
  262. López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of metastasis by NK cells. Cancer Cell. 2017; 32: 135-154. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28810142
  263. Rezvani K, Rouce RH. The application of natural killer cell immunotherapy for the treatment of cancer. Front Immunol. 2015; 6: 578. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26635792
  264. Knorr DA, Bachanova V, Verneris MR, Miller JS. Clinical utility of natural killer cells in cancer therapy and transplantation. Semin Immunol. 2014; 26: 161-172. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24618042
  265. Tian X, Wei F, Wang L, Yu W, Zhang N, et al. Herceptin enhances the antitumor effect of natural killer cells on breast cancer cells expressing human epidermal growth factor receptor-2. Front Immunol. 2017; 8: 1426. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29163501
  266. Oh E, Min B, Li Y, Lian C, Hong J, et al. Cryopreserved human natural killer cells exhibit potent antitumor efficacy against orthotopic pancreatic cancer through efficient tumor-homing and cytolytic ability (running title: cryopreserved NK cells exhibit antitumor effect). Cancers (Basel). 2019; 11: E966. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31324057
  267. Sun Y, Yao Z, Zhao Z, Xiao H, Xia M, et al. Natural killer cells inhibit metastasis of ovarian carcinoma cells and show therapeutic effects in a murine model of ovarian cancer. Exp Ther Med. 2018; 16: 1071-1078. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30116358
  268. Kuçi S, Rettinger E, Voss B, Weber G, Stais M, et al. Efficient lysis of rhabdomyosarcoma cells by cytokine-induced killer cells: implications for adoptive immunotherapy after allogeneic stem cell transplantation. Haematologica. 2010; 95: 1579-1586. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20378565
  269. Merker M, Pfirrmann V, Oelsner S, Fulda S, Klingebiel T, et al. Generation and characterization of ErbB2-CAR-engineered cytokine-induced killer cells for the treatment of high-risk soft tissue sarcoma in children. Oncotarget. 2017; 8: 66137-66153. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29029499
  270. Yu M, Luo H, Fan M, Wu X, Shi B, et al. Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma. Mol Ther. 2018; 26: 366-378. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29339014
  271. Du Y, Wei Y. Therapeutic potential of natural killer cells in gastric cancer. Front Immunol. 2019; 9: 3095. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30719024
  272. Zhang L, Mu Y, Zhang A, Xie J, Chen S, et al. Cytokine-induced killer cells/dendritic cells-cytokine induced killer cells immunotherapy combined with chemotherapy for treatment of colorectal cancer in China: a meta-analysis of 29 trials involving 2,610 patients. Oncotarget. 2017; 8: 45164-45177. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28404886
  273. Tanaka Y, Nakazawa T, Nakamura M, Nishimura F, Matsuda R, et al. ex vivo-expanded highly purified natural killer cells in combination with temozolomide induce antitumor effects in human glioblastoma cells in vitro. PLoS One. 2019; 14: e0212455. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30840664
  274. Genßler S, Burger MC, Zhang C, Oelsner S, Mildenberger I, et al. Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncoimmunology. 2015; 5: e1119354. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27141401
  275. Murakami T, Nakazawa T, Natsume A, Nishimura F, Nakamura M, et al. Novel human NK cell line carrying CAR targeting EGFRvIII induces antitumor effects in glioblastoma cells. Anticancer Res. 2018; 38: 5049-5056. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30194149
  276. Huang BY, Zhan YP, Zong WJ, Yu CJ, Li JF, et al. The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells. PLoS One. 2015; 10: e0134715. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26266810
  277. Haspels HN, Rahman MA, Joseph JV, Gras Navarro A, Chekenya M. Glioblastoma stem-like cells are more susceptible than differentiated cells to natural killer cell lysis mediated through killer immunoglobulin-like receptors-human leukocyte antigen ligand mismatch and activation receptor-ligand interactions. Front Immunol. 2018; 9: 1345. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29967607
  278. Gras Navarro A, Espedal H, Joseph JV, Trachsel-Moncho L, Bahador M, et al. Pretreatment of glioblastoma with bortezomib potentiates natural killer cell cytotoxicity through TRAIL/DR5 mediated apoptosis and prolongs animal survival. Cancers (Basel). 2019; 11: E996. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31319548
  279. Lee ST, Bracci P, Zhou M, Rice T, Wiencke J, et al. Interaction of allergy history and antibodies to specific varicella-zoster virus proteins on glioma risk. Int J Cancer. 2014; 134: 2199-2210. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24127236
  280. Alvarez-Breckenridge CA, Yu J, Price R, Wojton J, Pradarelli J, et al. NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat Med. 2012; 18: 1827-1834. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23178246
  281. Li Y, Sun R. Tumor immunotherapy: New aspects of natural killer cells. Chin J Cancer Res. 2018; 30: 173-196. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29861604
  282. Kimpo MS, Oh B, Lee S. The role of natural killer cells as a platform for immunotherapy in pediatric cancers. Curr Oncol Rep. 2019; 21: 93. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31502008
  283. Jensen IJ, Winborn CS, Fosdick MG, Shao P, Tremblay MM, et al. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog. 2018; 14: e1007405. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30379932
  284. Welsh RM, Waggoner SN. NK cells controlling virus-specific T cells: Rheostats for acute vs. persistent infections. Virology. 2013; 435: 37-45. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23217614
  285. Golden-Mason L, Rosen HR. Natural killer cells: multifaceted players with key roles in hepatitis C immunity. Immunol Rev. 2013; 255: 68-81. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23947348
  286. Keawvichit R, Khowawisetsut L, Lertjuthaporn S, Tangnararatchakit K, Apiwattanakul N, et al. Differences in activation and tissue homing markers of natural killer cell subsets during acute dengue infection. Immunology. 2018; 153: 455-465. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29105052
  287. De Pelsmaeker S, Romero N, Vitale M, Favoreel HW. Herpesvirus evasion of natural killer cells. J Virol. 2018; 92: 105-117. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29540598
  288. Campbell TM, McSharry BP, Steain M, Ashhurst TM, Slobedman B, et al. Varicella zoster virus productively infects human natural killer cells and manipulates phenotype. PLoS Pathog. 2018; 14: e1006999. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29709039
  289. Hammer Q, Romagnani C. About training and memory: NK-cell adaptation to viral infections. Adv Immunol. 2017; 133: 171-207. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28215279
  290. Waggoner SN, Reighard SD, Gyurova IE, Cranert SA, Mahl SE, et al. Roles of natural killer cells in antiviral immunity. Curr Opin Virol. 2016; 16: 15-23. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26590692
  291. Herrera L, Salcedo JM, Santos S, Vesga MÁ, Borrego F, Eguizabal C. OP9 feeder cells are superior to M2-10B4 cells for the generation of mature and functional natural killer cells from umbilical cord hematopoietic progenitors. Front Immunol. 2017; 8: 755. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28713379
  292. Grossenbacher SK, Aguilar EG, Murphy WJ. Leveraging natural killer cells for cancer immunotherapy. Immunotherapy. 2017; 9: 487-497. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28472904
  293. Nayyar G, Chu Y, Cairo MS. Overcoming resistance to natural killer cell based immunotherapies for solid tumors. Front Oncol. 2019; 9: 51. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30805309

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More