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Abstract 

Mesenchymal Stem Cells (MSCs) have antimicrobial, anti-infl ammatory, immunomodulatory, 
and regenerative potentials. Additionally, utilization of MSCs in the clinical arena has been shown 
to be safe and well tolerated. Hence, this form of cellular therapy has gained particular attention 
in the treatment of several infectious disorders and their complications. 

MSCs have been successfully used in the treatment of the following infections and their 
complications: bacterial infections including complicated sepsis; viral infections including Human 
Immunodefi ciency Virus (HIV), hepatitis B and C viruses, and Coronavirus disease (COVID-19) 
complicated by acute respiratory distress syndrome; parasitic infections including schistosomiasis, 
malaria, and Chagas disease; and mycobacterial infections including tuberculosis. The use of 
MSCs derived from certain sources and Extracellular Vesicles (ECVs) derived from MSCs has 
improved their effi  cacy and reduced their side eff ects. However, the clinical application of MSCs 
in the treatment of several infectious diseases still faces real challenges that need to be resolved. 
The current status of MSCs and the controversies related to their utilization in various infections 
will be thoroughly discussed in this review. 

are needed for clearance of pathogens and reducing their load 
as shown in preclinical models of sepsis, cystic ibrosis and 
Acute Respiratory Distress Syndrome (ARDS); (5) having the 
capacity to enhance antibacterial activity by interaction with 
the host innate immune system; (6) activation of phagocytosis 
and reprogramming of macrophages and neutrophils towards 
a more anti-in lammatory phenotype; (7) activation of the 
immune responses by induction of proin lammatory responses 
and downregulation of proin lammatory cytokines; (8) 
secretion of antimicrobial peptides, molecules, and proteins 
such as: interleukin (IL)-17, indoleamine 2,3 dioxygenase, 
β-defensins, lipocalin-2, and cathelicidin LL-37; (9) inhibition 
of in lammation and regulation of multiple in lammatory 
networks; and (10) changing the microenvironment at the 
site of infection and inhibition of T-cell proliferation at the site 
of tissue injury [2,3,5-7]. 

Introduction
MSCs are heterogeneous, non-hematopoietic, adult 

multipotent stromal progenitor cells that are capable of self-
renewal and differentiation into multiple lineages and various 
cell types [1-3]. MSCs can be obtained from various body 
tissues and organs and they have characteristic features and 
surface markers on low cytometry as shown in Table 1 [1-
5]. MSCs have several antimicrobial, anti-in lammatory, and 
regenerative properties which make them suitable candidates 
for use in the treatment of various infections and their 
complications. These properties include: (1) inhibition of 
bio ilm formation; (2) excessive recruitment of neutrophils to 
the sites of infection or in lammation; (3) reduction of tissue 
damage and release of paracrine factors that direct tissue 
regeneration and wound healing; (4) detection and elimination 
of invading pathogens and release of antimicrobial factors that 
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MSCs have demonstrated potent antimicrobial effects 
through direct and indirect mechanisms against the major 
classes of human pathogens including bacteria, viruses, fungi, 
and parasites across a wide range of infection models. The 
immunomodulatory and antibacterial activity of MSCs can be 
enhanced by various forms of preconditioning protocols [1,8]. 
Currently, more than 80 Clinical Trials (CTs) are investigating 
the use of MSCs in the treatment of various infections 
including sepsis, local bacterial infections, and viral infections 
such as COVID-19 [1,9]. The completed CTs on the use of MSCs 
in dif icult-to-treat infectious diseases have demonstrated 
safety, tolerability, as well as potential ef icacy as adjuvant 
therapy in complex or resistant infections [1]. The use of ECVs 
of MSCs is a promising cell-free treatment strategy that allows 
for solving problems associated with the safety of cell therapy 
and increasing its effectiveness. Hence, MSCs and their ECVs 
can be a promising tool for the treatment of various infectious 
diseases, particularly in combination with antimicrobial 
agents [2,4]. 

Factors that aff ect the outcome of mesenchymal stem 
cell therapies

Recent studies have suggested that factors such as age, 
gender, route of administration, infused stem cell dose, as 
well as biological sources of MSCs, have a signi icant impact 
on the outcome of MSC therapies [10-14]. Also, studies 
have shown that: (1) it is preferable to use MSCs obtained 
from Bone Marrows (BMs) of young healthy donors or 
derived from Umbilical Cords (UCs) directly after birth; and 
(2) administration of MSCs that are compatible with the 
biological gender of the recipient can avoid gender-speci ic 
immunological complications [12]. Although similar, MSCs 
derived from different sources possess distinct characteristics, 
advantages, and disadvantages, including their differentiation 
potential and proliferation capacity, which in luence their 
clinical applicability [15]. However, the preferred source 
may vary according to the clinical indication. Examples are: 
MSCs derived from BM, adipose tissue, and dental tissues are 
preferable for use in oral and dental regeneration while MSCs 
obtained from UC and other perinatal tissues are preferable in 
COVID-19 infections [16-20]. 

Mesenchymal stem cells in bacterial infections

Chronic bacterial infections associated with bio ilm 
formation are often dif icult to treat without extended courses 
of antibiotic therapy [21]. The antimicrobial activity of MSCs 
relies on direct effects and indirect effects by secreting 
paracrine factors to inhibit bacterial growth [6]. In animal 
models, the combination of activated MSCs and antibiotic 
therapy may become a promising approach to treating 
infections caused by drug-resistant bacteria and accelerate 
the healing of infected tissues [22,23]. In patients with sepsis 
or pneumonia, administration of MSCs has been shown to 
inhibit bacterial growth and enhance survival by improving 
clearance of pathogenic bacteria [24,25]. So, MSCs should be 
considered as novel therapeutic strategies to control chronic 
infections and infections caused by multi-drug resistant 
organisms [6,21]. 

Sepsis and septic shock are life-threatening disorders that 
are associated with high rates of morbidity and mortality 
[26,27]. Recently, due to the failure of conventional therapies, 
research has been focused on innovative treatments such as 
cellular therapies [26]. The antimicrobial, immunomodulatory, 
anti-in lammatory, anti-apoptotic, and regenerative 
properties of MSCs can protect against organ failure caused 
by sepsis and septic shock. Consequently, MSCs have been 
extensively utilized in preclinical as well as clinical trials in 
various infectious diseases [26,27]. However, the mechanisms 
involved in the way MSCs exert their bene icial effects to 
control in lammation and prolong survival in septic conditions 
remain unclear [28]. Based on their immunomodulatory and 
antimicrobial properties, adult MSCs represent an emerging 
therapeutic strategy to treat sepsis and sepsis-induced organ 
dysfunction or failure [29,30]. Adult MSCs have been shown 
to reduce mortality in experimental models of sepsis [7]. 
Three phase I CTs, that included small numbers of patients, 
on the use of MSCs in the treatment of patients having septic  
shock have shown safety and positive impact of MSC therapy 
on survival rates of patients during the early phase of sepsis. 
However, there is an urgent need to perform phase II as well 

Table 1: Sources and characteristic features and surface markers of MSCs.

Sources of MSCs Characteristic features of MSCs Surface markers of MSCs

1. Bone marrow
2. Peripheral blood
3. Umbilical cord (UC) blood
4. Wharton's jelly of UC
5. Placenta
6. Amniotic fl uid
7. Menstrual blood
8. Breast milk
9. Adipose tissues
10. Dental pulp
11. Palatal tonsils
12. Salivary glands
13. Lung and liver tissues

1) Diff erentiation into osteoblasts, adipocytes, and chondrocytes.
2) Adherence to the plastic vessel under optimal culture 

conditions.
3) Having characteristic surface markers on fl ow cytometry.

Characteristically positive:
  CD 105
CD 73
CD 90

Characteristically negative:
CD 45
CD 34
CD 14 

  CD 11b 
CD 19 

  CD 79a
    HLA-DR

- MSCs: Mesenchymal Stem Cells
- HLA: Human Leukocyte Antigen
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mechanisms of action and they have demonstrated safety 
pro ile in early phase studies [40]. IL-18, which is highly 
expressed in in luenza-A H1N1-induced severe lung injury, is 
a promising cytokine that can prime UC-MSCs to improve the 
ef icacy of precision therapy against viral-induced pneumonia 
such as COVID-19 [41]. Respiratory syncytial virus-mediated 
lung injury activates and stimulates the expansion of LR-
MSCs which mount a transcriptional program related to 
the mechanisms of repair and regeneration [39]. Soluble 
mediators released from avian in luenza A-H5N1 virus-
infected alveolar epithelial cells impair alveolar luid clearance 
and protein permeability by down-regulating alveolar 
sodium and chloride transporter proteins [42]. Studies have 
shown that (1) MSCs reduce the impairment of alveolar luid 
clearance induced by in luenza A H5N1 infection in vitro 
and prevent or reduce in luenza A-H5N1-associated Acute 
Lung Injury (ALI) in vivo, (2) transplantation of IL-18 primed 
human UC-MSCs has signi icantly enhanced the inhibition of 
in lammation, viral load, ibrosis, and cell apoptosis in ALIs, 
(3) treatment with IL-18 primed human UC-MSCs has superior 
inhibitory effect on T-cell exudation and proin lammatory 
cytokine secretion in bronchoalveolar lavage luid, (4) in 
animal models, BM-MSCs exert antiviral properties and they 
may have therapeutic potential in the treatment of in luenza 
virus-induced pneumonia and ALI, and (5) MSCs have been 
shown to enhance antiviral immune responses and protect 
against lethal or generalized herpes viral infections [42-44]. 
Additionally, exosomes derived from human UC-MSCs have a 
broad antiviral role in the inhibition of viral replication and 
provide new insights into the development of antiviral agents 
by bioengineering these exosomes to target respiratory 
viruses [45]. 

Stem cell-based therapies represent innovative 
approaches to rebuild the damaged immune system and 
ultimately eliminate the virus from the body [37]. The 
potential of MSCs to treat viral infections is still in its infancy 
due to the limited number of studies on the use of these cells 
in the treatment of virus-associated diseases [46]. In HBV-
related acute or chronic liver failure, transplantation of MSCs 
has been shown to: improve liver function, increase survival 
of patients, and decrease the incidence of severe infections 
[47,48]. Despite that MSCs appear to have the potential to 
contribute to the HIV-1 reservoir, the use of MSCs derived 
from adipose tissues and UC in 2 CTs performed in patients 
with acquired immunode iciency syndrome has not been 
shown to be effective in recovering immunity or aiding 
immune reconstitution in an immune non-responder group of 
patients although safety of MSC therapy has been con irmed 
[36,49,50]. 

Ten systematic reviews and meta-analyses that included 
129 CTs comprising 4391 patients on the use of MSCs in the 
treatment of COVID-19 infection and its complications have 
shown the following results: (1) MSCs can reduce the mortality 

as randomized phase III CTs to determine the role of MSC 
therapies in patients with septic shock [31-33]. Additionally, 
ECVs of MSCs have therapeutic effects that are similar to the 
parent MSCs and they can protect against sepsis-induced 
organ dysfunction [27]. Studies in animal models have 
shown that the use of ECVs obtained from BM-derived MSCs 
was associated with less organ damage in comparison to 
ECVs derived from MSCs obtained from other sources [34]. 
Additionally, ECVs derived from MSCs have shown a superior 
safety pro ile as well as the ability to be stored safely without 
loss of function compared to the parent cells. Hence, MSC-
ECVs may be used as a novel alternative to MSC-based therapy 
in sepsis [27]. 

Mesenchymal stem cells and viral infections

The interplay between MSCs and viruses can be described 
as a double-edged sword as MSCs have been found to be highly 
susceptible to viral infections in vitro [35]. Upon encountering 
certain viruses, MSCs appear to produce deleterious effects 
and they act as viral transmitters and this may raise concerns 
about their therapeutic ef icacy. On the other hand, MSCs 
provide bene icial effects such as allowing the proliferation 
and function of speci ic antiviral effector cells instead of 
suppressing them thus they may serve as an ideal tool to study 
viral pathogenesis and protect hosts against viral challenges 
by using their antimicrobial activity [35-37]. Additionally, 
MSCs express receptors that are used by HIV, hepatitis B 
virus (HBV), and herpes viruses for their interaction with 
target cells. Hence, MSCs are permissive for these viruses 
and could transmit them to recipients of allogeneic stem cell 
transplantation [38]. As the clinical ef icacy of MSC infusion 
may be impaired by some destructive outcomes, MSCs should 
be screened for HIV, HBV, herpes, and other viruses prior to 
transplantation in order to prevent the evolution of viral-
associated diseases and to ensure the safety of MSC therapy 
[35,38]. 

Upon infection, Lung Resident (LR)-MSCs mount an 
antiviral response and release a variety of immunomodulatory 
mediators which may have a biological impact on the 
pulmonary microenvironment [39]. During the early phase of 
viral infection, MSCs that are activated by viral antigens elicit 
strong immune responses by production of proin lammatory 
cytokines which enhance the antiviral properties of immune 
cells [38]. However, after the elimination of viral pathogens, 
MSCs produce immunoregulatory cytokines and trophic 
factors that support the prevention of overactivation of 
immune cells, as well as the repair and regeneration of injured 
tissues. Thus, MSCs orchestrate antiviral immune responses 
that crucially contribute to the elimination of infected cells 
[38]. 

MSCs display considerable promise in the treatment of 
severe viral pneumonia as they possess several relevant 
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rates and increase overall survival in patients with COVID-19 
infection; (2) MSCs can reduce the severity of COVID-19 
pneumonia; (3) MSCs can induce remission of symptoms 
related to COVID-19 infection in the vast majority of studies 
included; (4) MSCs can reduce the duration of hospitalization 
and the requirement for invasive mechanical ventilation; (5) 
MSCs can improve lung function and radiological appearances 
in patients with COVID-19 pneumonia; and (6) MSCs can 
reduce the levels of in lammatory markers such as C-reactive 
protein and interferon-gamma in the majority of patients 
with severe COVID-19 infection [17,51-59]. Additionally, 
the included CTs have shown the safety of MSC therapy in 
COVID-19 infection without an increase in adverse effects 
[17,51-54,56-59]. In the CTs included: the commonest source 
of MSCs was the UC, intravenous infusion was the most 
common route of administration of MSCs, and the number 
of injections given ranged between 1 and 3 injections with 
variable MSC doses [17,18,52,56,58-60]. 

Several studies have shown that the use of MSCs and their 
secretome in the treatment of severe COVID-19 infections 
has the following bene icial effects: (1) suppression of viral 
replication, viral shedding, and virus-induced damage to lung 
epithelial cells; (2) enhancement of the generation of regulatory 
Tcells that are suppressed by COVID-19; (3) MSCs shift the 
phenotype of antigen presenting cells including dendritic 
cells, B-lymphocytes, and macrophages; (4) MSCs modulate 
the proliferation and activation of naïve and effector T-cells, 
natural killer cells, and mononuclear cells; (5) MSCs prevent 
the formation of neutrophil extracellular traps that may have 
deleterious effects in patients with COVID-19 pneumonia 
and ARDS; (6) MSCs can inhibit the cytokine storm induced 
by COVID-19; (7) the secretome of MSCs including ECVs and 
exosomes has antiviral, antibacterial, and even analgesic 
effects; (8) reduction in pulmonary oedema associated 
with ARDS in COVID-19; (9) entrapment of intravenously 
infused MSCs in the lungs which is an advantage in patients 
with COVID-19 patients having pneumonia and ARDS; (10) 
enhancement of tissue regeneration and promotion of 
endogenous repair and healing in ALI induced by COVID-19; 
and (11) safety and ef icacy of MSCs and their products 
provided good manufacturing practice guidelines and quality 
control measures of the whole process from harvesting till 
delivery are strictly applied [2,61-65]. 

Long-term follow-up of 65 patients having severe 
COVID-19, included in a CT, who received MSCs showed 
safety, but the ef icacy of MSC treatment was not signi icantly 
sustained through the end of the 2-year follow-up period [66]. 
However, another CT that included 100 patients with COVID-19 
infection on the use of UC-MSC treatment showed that UC-MSC 
administration achieved a long-term bene it in the recovery of 
lung lesions and symptoms after 1 year of follow-up [67]. Also, 
a third CT that included 17 patients with severe COVID-19 

who required invasive mechanical ventilation in the intensive 
care unit showed that UC-MSCs infusion was safe and could 
play an important role in the chronic phase with a reduction 
in post-acute sequelae reduction in critically ill COVID-19 
patients [68]. Additionally, MSC secretome could offer a new 
therapeutic approach to treating COVID-19 ibrotic lungs 
through its anti-in lammatory and anti ibrotic factors [69]. 

Mesenchymal stem cells in mycobacterial infections

Recent studies have demonstrated that: (1) MSCs are 
present in and around the tuberculous granulomas which 
contain Mycobacterium Tuberculosis (MTB) bacilli, (2) MTB 
uses MSCs as a niche to evade host protective immune 
surveillance mechanisms and establish dormancy, (3) 
MSCs have the ability to restrict the growth of MTB to a 
certain extent and may be involved in the development of 
TB, (4) MSCs maintain antibacterial, immunomodulatory, 
anti-in lammatory, and regenerative properties during the 
regulation of TB immune responses, (5) MSCs express a large 
number of ATP-Binding Cassette (ABC) ef lux pumps so that 
dormant MTB residing in MSCs are exposed to a suboptimal 
dose of drugs, and (6) MSCs represent the ifth element in 
cell-mediated immunity that is capable of regulating immune 
responses during TB infection [70-75]. Hence, it is highly likely 
that MSCs play signi icant roles in orchestrating: dormancy 
and reactivation of MTB, evasion of host immune responses, 
as well as resistance to anti-TB drugs [70,74,75]. Additionally, 
MSCs can be used as an immune target or immunotherapy 
agent for the treatment of TB and may provide a screening 
model for the development of new drugs or vaccines for TB 
[71]. 

Transplantation of MSCs and their exosomes has been 
used in the treatment of Multidrug-Resistant (MDR)-TB 
[73,76]. Three CTs; that included 135 patients; on the use of 
autologous MSCs to treat MDR-TB and extensively DR (XDR)-
TB have shown the following results: (1) MSCs induced clinical 
and radiological improvements in 70% - 80% of patients; 
(2) MSC transplantation induced persistent remission and 
even cure in 53% - 56% of patients; and (3) the addition of 
autologous MSC transplantation to conventional anti-TB 
chemotherapy signi icantly enhanced the response rates in 
patients with MDR-TB and XDR-TB [77-79]. 

Mesenchymal stem cells in parasitic infections

Stem cells exert inhibitory effects on parasitic infections 
and they improve the functions of the tissues and organs 
involved [80,81]. Stem cell therapies are necessary in 
the treatment of parasitic infections because there are 
limited drug choices, and there is continuous emergence 
of drug resistance [80]. Stem cells including MSCs have 
been used in the treatment of various parasitic infections 
including leishmaniasis, trypanosomiasis, schistosomiasis, 
echinococcosis, malaria, and toxoplasmosis [80,81]. 
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In malaria, treatment with BM-derived MSCs showed the 
following effects: (1) improved the clearance of parasitized 
red blood cells, (2) increased the regeneration of hepatocytes 
and Kupffer cells, (3) increased the number of astrocytes and 
oligodendrocytes in the brain, (4) increased survival, and (5) 
decreased in lammation and malaria pigment accumulation in 
kidneys, lungs, and spleens of experimental animals [80,82]. 
Additionally, BM-derived MSCs are promising in the treatment 
of cerebral malaria as animal studies have shown that the 
combination of MSCs and adjuvant antimalarial treatment: 
protects against vascular damage, improves depression, and 
increases survival [82,83]. In experimental schistosomiasis, 
treatment with BM-derived MSCs signi icantly reduced the 
granuloma size as well as the expression of the ibrosis factor, 
alpha-smooth muscle actin, in hepatic cells [83]. Treatment 
with MSCs showed a signi icant reduction in the cutaneous 
lesions caused by Leishmania major, while in toxoplasmosis, 
experimental therapy with BM-derived MSCs combined 
with spiramycin, pyrimethamine, and folinic acid showed a 
signi icant decrease in the number and size of tissue cysts in 
the brains of mice [83]. 

In Chagas disease, unfortunately, more success has been 
achieved in animal or preclinical studies than in human studies 
[84]. In the murine model of Chagas disease, co-transplantation 
of MSCs and skeletal myoblasts has been shown to be effective 
in decreasing ventricular dysfunction [85]. In the Chagas 
disease model, cardiac MSCs have demonstrated potential 
as they exerted a protective effect on chronic Chagasic 
cardiomyopathy through immunomodulation but they 
neither reduced ibrosis nor contributed to cardiomyocyte 
formation [86]. Repeated injections of granulocyte colony-
stimulating factor (G-CSF), which mobilizes stem cells from 
the BM, decreased in lammation and ibrosis in the hearts of 
mice having Chagas disease [80]. Also, G-CSF overexpression 
in MSCs potentiated the in vivo immunosuppressive effects of 
MSCs in chronic Chagas disease models [87]. 

The rising role of extracellular vesicles and exosomes 
of mesenchymal stem cells in the treatment of 
infectious diseases

Recently, studies have demonstrated that MSC-derived 
ECVs are at least partially responsible for the paracrine 
effects of MSCs including the transfer of molecules such 
as proteins/peptides, mRNA, microRNA, and lipids with 
immunoregulatory properties to recipient cells, and may 
offer speci ic advantages over the parent MSCs due to lower 
immunogenicity, storage without losing function, and superior 
safety pro ile [88,89]. ECVs can achieve their valuable roles 
in the treatment of infectious diseases through different 
mechanisms including elimination of the pathogen, regulation 
of immunity, modulation of drug resistance, repair of tissue 
damage, production of antimicrobial substances, inhibition 
of pathogen multiplication, and activating phagocytic activity 
of macrophages [90,91]. ECVs of MSCs have been extensively 

explored in treating various infectious diseases including 
respiratory tract infections, urinary tract infections, wound 
infections, sepsis, and intestinal infections [90,91]. MSC-
ECVs have been shown to mimic MSCs in alleviating sepsis 
and protecting against sepsis-induced organ dysfunction and 
hence they may serve as an alternative to whole-cell therapy 
[88,89]. Thus, ECVs play a key role in infectious pathogenesis 
and hold great promise for developing innovative treatments 
[90]. 

Recent studies have shown that MSCs-derived exosomes 
may improve some complications of COVID-19 infection such 
as cytokine storm, ARDS, and ALI by suppressing in lammatory 
responses and regeneration of damaged tissues, and also 
serve as biomarkers, nanocarriers, and vaccines for the 
treatment of SARS-CoV-2 virus [92,93]. Nebulization of MSC-
derived exosomes has been shown to be safe and effective, 
and administration of exosomes at the beginning of treatment 
of COVID-19 pneumonia may be more bene icial [94]. 

Conclusion and Future Prospects
MSCs have antimicrobial, anti-in lammatory, immuno-

modulatory, and regenerative potentials that have enabled 
them to be used in the treatment of several bacterial, viral, 
mycobacterial, and fungal infections and their complications. 
The utilization of MSCs and their secretome have shown not 
only success and ef icacy but also safety in the treatment of 
infections caused by MTB and COVID-19 infection and its 
complications in particular. Unfortunately, in MSC therapy for 
Chagas disease, more success has been achieved in animal or 
preclinical studies than in human studies. 

Bioengineering of MSCs, and the use of MSCs obtained from 
certain sources, as well as the utilization of ECVs derived from 
MSCs have improved their ef icacy and reduced their side 
effects. However, despite the progress achieved, the clinical 
application of MSCs in the treatment of several infectious 
diseases still faces real challenges that need to be resolved.
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