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Mesenchymal stem cells (MSCs) are multipotent adult stem cells that can self-renew 
and differentiate into a variety of cell types including chondrocytes, osteocytes and adi-
pocytes. MSCs reside in bone marrow, adipose tissues, cord blood, peripheral blood, pla-
centa, Wharton’s jelly, fetal liver and lung among others. MSCs represent one of the most 
promising stem cells for regenerative medicine due to their multipotency, immunoprivi-
leged properties and easy expansion in vitro. So far, MSCs are already in various phases 
of clinical application [1-4]. Their most immediate use is in the orthopedic context due 
to the clear demonstration of their ability to differentiate into bone and cartilage [5-8]. 
It has been 5 decades since Friedenstein et al described clonal and plastic adherent stro-
mal cells from bone marrow in the 1960s [9,10]. Although there are a handful of genes 
suggesting possible MSC stemness markers, the molecular basis underlying MSC stem-
ness, especially the key transcription factor to MSC stemness, is still poorly understood. 

     There are several reasons for poor understanding of MSC stemness. First of all, 
the heterogeneity of MSCs greatly hamper in-depth MSC study. Variations exist among 
MSCs from different sources and culture conditions, even fast and slow growing CFU-
derived MSCs from the same patient also display differences [11,12]. So far, the factors 
that affect the heterogeneity of the MSC population is still largely unknown. Secondly, 
the limited lifespan of MSCs increases the difϐiculty to study MSCs, especially in case 
of large number of cells needed. Like other adult stem cells, MSCs undergo the replica-
tive senescence after only a ϐinite number of times in culture. At around passage 10, 
MSCs demonstrate morphological abnormalities, enlargement, attenuated expression 
of speciϐic surface markers, and ultimately proliferation arrest [13,14]. In the mean-
while, MSCs reduce differentiation potential during prolonged in vitro culture [15]. 
The limited lifespan of MSCs also greatly compromises the therapeutic application of 
human MSCs due to limitation in cell number. Thirdly, little is known about MSC niche. 
Stem cell niche is a speciϐic microenvironment, in which stem cells are able to self- 
renew and maintain the undifferentiated state. So far, the MSC niche remains poorly 
understood.

Stem cell niche provides a milieu that prolongs cellular lifespan and maintains the 
undifferentiated state of stem cells. Mimicking endogeneous niche of MSCs is able to 
delay the cell aging and maintain MSC stemness, including hypoxia [16-18], coating 
with extra-cellular matrix (ECM) [19,20], and 3D culture [21,22] among others. 
Hypoxic environment has been suggested as physiologic niche to maintain stemness of 
stem cells. MSCs resides in niche characterized by hypoxic condition. Culture of MSCs 
under hypoxia enhanced proliferation and preserved the expression of stemness-
related genes [16,18]. Changed gene expression proϐile of MSCs by hypoxia included 
differentiation, extracellular matrix, intermediate ϐilament, metabolic gene, antioxidant 
genes and striated muscle genes [17]. In addition, extracelluar matrix (ECM) also plays 
important role in the stem cell niche. It was shown that hyaluronan (HA) prolonged 
the lifespan and prevented the cellular aging of murine adipose-derived MSCs [19]. 
MSCs expanded in ϐlasks coating with ECM exhibited higher proliferation, formed 
more and larger sized cell colonies with smaller and more compactly arranged cells, 
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and had greater differentiation potential [20]. 3D culture of MSCs on under spheroids 
or nanoculture plates, closer to in vivo niche of MSCs, delayed replicative senescence 
and enhanced the differentiation potential [21,22]. In addition, expansion of MSCs 
in medium containing FGF-2 appeared to promote proliferation and inhibit cellular 
senescence through a PI3K/AKT-MDM2 pathway [23]. Even blockage of endogenous 
glucocorticoids using RU486 signiϐicantly increase the proliferation and osteogenic 
differentiation of human MSCs [24]. 

Although efforts have been made for past 5 decades, little is known about the mo-
lecular basis underlying MSC stemness. So far, no one key transcription factor to MSCs 
like pluripotent genes Oct4, Nanog and Sox2 to ES has been identiϐied, deprivation of 
which leads to the complete loss of MSC identity. To decipher the signature genes of 
MSCs, by comparing genes expression proϐile before and after tri-lineage differentia-
tion, a list of highly expressed genes in undifferentiated MSCs were identiϐied, includ-
ing 9 transcription factors. However, individual knockdown only partially decrease 
proliferation or differentiation of MSCs [25]. NRF2 was identiϐied as potential marker 
by analyzing gene expression. Knockdown of NRF2 decreased osteogenesis whereas 
overexpression of NRF2 increased the proliferation and reduced the rate of apoptosis 
of MSCs [26]. In addition, overexpression of cell surface protein CD49f (integrin sub-
unit α6) modulated the proliferation and differentiation potentials of MSCs through ac-
tivating PI3K/AKT and suppressing p53 expression [27]. Epigenetic modiϐication also 
controls MSC function. BCL-6 co-repressor (BCOR) interacts with BCL-6 to repress AP-
2alpha, which is key factor that enhances osteo-dentinogenic capacity of MSCs. BCOR 
mutation results in abnormal activation of AP-2alpha, which leads to oculo-facio-car-
dio-dental (OFCD) syndrome characterized by canine teeth with extremely long roots, 
congenital cataracts, craniofacial defects and congenital heart disease. Further analy-
sis showed that BCOR mutation activated silenced target genes by increasing histone 
H3K4 and H3K36 methylation in MSCs [28]. 

Although these studies expand our understanding towards MSCs, it is still not 
clear that these genes regulate MSC stemness or only differentiation. So far, the 
understanding towards MSC stemness is still the tip of the iceberg. To make better use 
of MSCs for regenerative medicine, more efforts are needed to decipher the molecular 
basis of MSCs, especially key transcription factors to MSCs. 
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