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Introduction
Epilepsy is a severe neurological disease affecting more 

than 70 million people worldwide. It is characterized by 
unpredictable and abnormal electrical discharges resulting 
in recurrent seizures [1]. Epilepsy has been causally linked 
to altered excitatory/inhibitory neuronal balance. Based on 
this theory, GABAergic interneurons (INs) are regarded as the 
primary inhibitory neurons whose activity failure results in 
hyperactivity of the epileptic circuitry [2].

Anti-epileptic drugs (AEDs) are the forefront treatment 
for seizure control [3]. About one third of patients with 
epilepsy, however, suffer from intractable seizures that 
are unresponsive to AEDs [4]. Furthermore, patients that 
respond to AEDs typically face serious adverse side effects 
[5]. Surgical removal of affected brain tissues or implanting 
neurostimulator devices are effective options only for a 

fraction of drug-refractory patients [6]. Furthermore, current 
treatments of epilepsy often enhance some of the deϐicits in 
cognitive functions typically associated with epilepsy, leading 
to poor compliance [7]. Thus there is urgent need to ϐind 
alternative strategies, especially for AED-refractory patients. 

Basic research on stem cells, their cellular and molecular 
properties, and their potential use in cell-based therapeutic 
approaches has greatly advanced, in recent years. Intense 
efforts have been placed on the establishment of protocols to 
efϐiciently direct differentiation of stem and progenitor cells 
towards several lineages. Among these GABAergic INs, the 
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Forebrain GABAergic neurons, the main inhibitory type of neuron in the cortex and 
hippocampus, represent a highly heterogeneous cell population that has been implicated in 
the predisposition to epilepsy and the onset of seizure. Earlier attempts to restore inhibition 
and reduce seizure in animal models of epilepsy have been carried out using embryonic basal 
forebrain tissue as source of immature GABAergic progenitors in cell-based therapies, with 
promising results. For therapeutic strategies this approach appears unrealistic, while the use 
of pluripotent stem cells to obtain immature GABAergic neurons opens new and promising 
avenues. Research on neural stem cells and pluripotent stem cells has greatly advanced and 
protocols have been established to effi  ciently direct progenitor cells to differentiate towards 
the GABAergic lineage. However, being highly heterogeneous, these neurons are diffi  cult to be 
fully represented in vitro. Better knowledge on the expressed gene profi les, at single cell level, 
and the differentiation trajectory of these neurons will consent a more precise monitoring of the 
differentiation steps. Here we review the current literature about how to obtain and characterize 
genuine inhibitory neurons, how these can be grafted in animal models (and one day possibly 
in human) and which diseases could potentially be targeted and the effi  ciency of therapeutic 
outcome. The main obstacles that need to be overcome are: a) choice of an appropriate animal 
model, b) availability of human cells prone to GABA differentiation, c) the full representation of 
all IN subtypes, their proportions and their physiological activities, d) how to monitor them on the 
long-term after transplant.
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main inhibitory neuronal type in the mammalian forebrain, 
have been obtained with good enrichment both from mouse 
and human stem cells, and hold promises for their potential 
use in clinic [8]. However, several problems and drawbacks 
arise, among which the highly heterogeneous neurochemical 
and networking properties of INs, the difϐiculty to fully 
recapitulate their developmental trajectories, and their fate 
upon transplant in the long term.

In spite of difϐiculties, attempts to use inhibitory GABAergic 
INs in cell-based therapies are showing some efϐicacy to 
attenuate the epileptic phenotype in selected animal models. 
Here we review the most relevant literature focussing on how 
to obtain and characterize genuine inhibitory INs and how 
these can be grafted in animal models (and one day possibly 
in human) of epileptic conditions, showing promising results 
that should foster future research in this area.

Types, origin and functions of forebrain INs

The mammalian cerebral cortex is typically a six-layered 
organization which includes two major classes of neurons: 
the excitatory pyramidal cells that project to cortical and 
subcortical targets, and the inhibitory non-pyramidal cells, the 
cortical INs. The hippocampus, that has a similar embryonic 
derivation, is equally composed of pyramidal projection 
and inhibitory neurons, although with a different layering 
organization and composition [9].

While pyramidal cells project their axons to distant region 
within or outside the cortex, and predominantly transmit signal 
using glutamate as neurotransmitter, INs have short, locally 
extending axons which connect to nearby neurons and use 
primarily -aminobutyric acid (GABA) as neurotransmitter. 
Within the mammalian cortex GABAergic INs represent 10-
20% of the total cortical neuronal population, depending on 
the region examined, and are the only source of GABA [9].

Adult INs are highly heterogeneous from several points of 
view, and consequently several subclasses have been identi-
ϐied whose classiϐication relies on morphologic, histologic, 
molecular and neurochemical features or electrophysiologi-
cal properties, or combination of these criteria [10,11]. In the 
rodent cerebral cortex and hippocampus, more than twenty 
GABAergic IN subtypes have been documented. The expres-
sion of three calcium-binding proteins calretinin (CR), calbi-
ndin (CB), parvalbumin (PV), or other markers such as soma-
tostatin (SST), neuropeptide Y (NPY), cholecystokinin (CCK), 
serotonin receptor 3a (5HT3aR), vasoactive intestinal peptide 
(VIP), reelin, and neuronal nitric oxide synthase (NOS), cou-
pled to their distinctive morphology, connectivity, synaptic 
properties, and intrinsic ϐiring properties are features that 
help to differentiate the various IN subtypes [12,13]. Recent 
in depth molecular analyses using single-cell RNAseq conϐirm 
and extends the extraordinary variety of INs [11,14,15] fur-
ther indicating that such diversity might be speciϐied as early 
as the progenitor state [16].

The origin and development of forebrain INs has been 
thoroughly studied in the rodent brain: they derive from 
progenitors that reside in basal regions of the embryonic 
brain, namely the median ganglionic eminence (MGE) (for 
cortex and hyppocampus), the lateral ganglionic eminence 
(LGE) (for olfactory bulb INs) and the caudal ganglionic 
eminence (CGE) [17-21]. Cortical and hippocampal INs derive 
mainly from the MGE and the CGE, and the majority of them 
express SST or PV, and originate from Nkx2.1+ progenitors in 
the MGE and the preoptic area [22-25].

Following exit from the cell cycle, the immature INs 
migrate into the cortical plate following stereotyped 
trajectories and timing, reaching the cortex and hippocampus 
primordial where they mature and integrate into local circuits 
[12,26]. INs migration follows several tangential routes and 
is critical for the correct establishment and integration of INs 
during embryonic and early postnatal life in both humans 
and rodents [21,27]. In human, in addition to interneuron 
genesis occurring within the GEs [28], IN progenitors have 
been detected in cortical progenitor zones, particularly at 
the anterior brain regions [29,30]. Intracortical interneuron 
genesis may start earlier than the time when tangential 
migration of INs from the MGE occurs [29].

As a general feature, GABAergic INs play a fundamental role 
in controlling the neural circuitry and network activity of the 
central nervous system (CNS), forming numerous connections 
with local pyramidal neurons or other INs and participating 
in the construction of functional networks. Cortical INs exert 
an essential inhibitory function within local cortical circuitry, 
modulate and coordinate signal transmission from pyramidal 
cells, synchronize oscillatory activities and participate in 
computational functions [31,32].

Each distinct IN subtype shows peculiar morphological and 
electrophysiological properties [32-34] and thus it is generally 
believed that each subtype of IN carries out specialized tasks 
in the control of information ϐlow within the cortex. However, 
the speciϐic function of each IN subtype, especially in the 
context of the global functioning of neuronal networks and 
their role in epileptic seizure, is still incompletely deϐined.

The involvement of INs and reduced GABAergic inhibition 
in epilepsy

Epilepsy reϐlects abnormal and massive hyper-
synchronous discharges from large assembly of neurons in 
cortical networks [35,36]. Temporal lobe epilepsy (TLE) is the 
most common form of epilepsy, characterized by the presence 
of epileptic foci in the limbic system, initial precipitating injury 
event (which induces the initial brain damage), the presence 
of a latent period and hippocampal sclerosis which leads to a 
reorganization of the neuronal network [37]. The etiology of 
epilepsy is complex and heterogenous, comprising structural, 
genetic, infectious, metabolic, immune and/or other unknown 
causes [38].
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Epileptic seizure might be caused by a variety of factors 
[39-42]. Altered excitation-inhibition balance is a proposed 
common pathophysiological feature of multiple seizure and 
neuropsychiatric disorders, including epilepsy, schizophrenia 
and autism [43-51]. Altered IN genesis, migration and function 
may logically contribute to modify the excitatory-inhibitory 
balance, and speciϐically a reduced inhibition is the expected 
consequence of reduced number or hypoactive INs within 
cortical and hippocampal circuits. Failure or interference 
of IN migration leads to abnormal distribution of INs and 
alterations of the inhibitory control of the postnatal brain but 
also deprivation of the neurotrophic role of GABA in early 
development, resulting in epilepsies or other neurological 
disorders [26,52-56].

One speciϐic subtype of INs has been critically involved 
in epilepsy, i.e. the fast-spiking PV-expressing INs [57-59]. 
However, the involvement of other subtypes might be under 
evaluated, since they are less studied. Indeed, the role of 
INs and altered excitation/inhibition balance in epilepsy 
is far from being completely understood. Recent evidence 
argues for the context-dependent, possibly excitatory roles 
that GABAergic cells play in epileptic circuitry. The dynamic, 
context-dependent role of GABAergic INs in seizure requires 
further investigation of their functions at single cell and 
circuitry level [60].

The causes of INs dysfuctions associated with epilepsy 
range from genetic mutations, altered migration, altered 
lamination and ϐine histoanatomical organization, connectivity 
and plasticity defects. Indirectly, also metabolic and hormonal 
condition may inϐluence the function of IN, and last but 
not least the exposure of the developing brain to stress or 
substances with teratological activity [61].

Dysfunction of cortical INs has been implicated in a wide 
range of neurological and cognitive/behavioral disease 
[33,62-64], leading to the term “interneuronopathy”, now 
widely used. The variety of neurological and cognitive 
disturbances linked to altered IN development and functions 
is not surprising, considering also the infantile transitional 
stage in the maturation of the GABAergic system, including 
the migration of INs in the cortical cortex, development 
of GABAergic synapses and dendritic arbor, as well as the 
changing expression, composition, and function of GABA-A 
receptors, resulting from the depolarizing to hyperpolarizing 
switch in their responses. 

A broad set of evidence implicate INs disfunctions in 
epilepsy [65,66]; and these include: 

1. Human neurodevelopmental conditions comprising 
epilepsy, associated with mutations in IN-relevant genes; such 
is the case of the West and the Dravet syndromes. Mutations 
in over 25 epilepsy-associated genes in human have been 
proposed to promote over-excitability, some of them acting 
by reducing inhibition [66]. In tissue from patients with TLE, 

hippocampal seizure foci were characterized by the loss of 
SST-expressing INs [67,68]. 

2. The association between a spectrum of early-onset 
epilepsies and neurodevelopmental or other neurological 
disorders that manifest as interneuronopathies in animal 
models. Such is the case of mice with mutations in Arx, in 
Scn1A and in Apc. Linked to this, the reduced IN population in 
rodent models of genetic (Arx mutant) and induced infantile 
spasms [65]. On the same line of evidence, the genetic 
mutation of Snc1a disrupts IN function and physiology and 
recapitulates the Dravet syndrome, characterized by infantile-
onset drug-resistent epilepsy. In mice, the impairment of the 
activity of PV+ and SST+ INs leads to a disinhibition of the 
cortical network and a Dravet-like phenotype [69]. In a non-
human primate model of neocortical focal epilepsy, a strong 
decrease in the number of GABAergic synapses was observed 
at epileptic foci [70]. 

3. The association between altered high-frequency 
oscillations (HFO) (such as and oscillations) and epilepsy 
[71,72]. HFO are typically recorded from brain regions capable 
of generating TLE, and altered HFO have been recorded 
in models of other epileptic disorders, such as neocortical 
epilepsy, genetically-caused epilepsy and infantile spasms 
[72]. Recent improvements in recording technologies and the 
introduction of optogenetics into epilepsy research has led to 
a better elucidation of the cellular substrates of epileptic HFO 
and of the role of altered neuronal networking. Although the 
role of INs in the generation of HFO is not fully deϐined, there 
are indications that a speciϐic subpopulation of INs, the fast-
spiking PV+ INs, are central to the emergence and control of 
oscillation. Altered PV+ neuron number and function have 
increasingly been associated to increase risk of epilepsy 
[73]. Likewise, INs have been implicated in the control of  
frequency oscillations [71].

4. Recent optogenetic studies have shown that enhancing 
the inhibitory function of GABAergic INs efϐiciently leads to 
suppression of seizures, in accordance with the concept that 
the excitatory-inhibitory balance shifts towards the excitatory 
regime in epilepsy [60,74,75].

5. Treatment with AEDs acting on the GABAergic synapse 
represents the most widely used clinical approach to treat 
epilepsy, and clinical data show that in these alleviate the 
manifestation during seizures, at least in the major of cases 
[76]. Treaments with AEDs however do not cure epilepsy, 
while on the other side systemic treatments with AED to 
prevent episodes may lead toserious side effects. More 
effective and local treatments are needed, that attempt to 
restore normal connectivity and excitation-inhibition balance. 

Deriving GABAergic neurons from progenitor cells in vitro

As a most straight-forward approach, MGE embryonic 
cells can be dissociated directly from explants of the MGE 
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tissue and maintained in vitro in adherent conditions. These 
cells can be plated in culture and can undergo maturation 
into INs expressing bona ide mature markers [77]. This 
approach has been widely exploited with mouse tissues 
for many experimental works in which single cells can be 
labeled with ϐluorescent tracers and monitored for migration, 
neuritogenesis and synaptogenesis. However, this method 
is poorly applicable to human settings since the approach is 
limited by the scarceness of tissue (i.e. fetal MGE from aborted 
human embryos).

To overcome this barrier, in the last decade several 
protocols to obtain bona- ide MGE cells from pluripotent 
stem cells (PSC) have been described [8]. Mouse and human 
PSCs have been shown to have a broad potential to generate 
multiple CNS neuronal subtypes [78]. The possibility to 
derive mature forebrain INs directly from PSC holds great 
promises for research and therapeutic applications. Since 
both embryonic stem cells (ESCs) and iPSC (induced PSC) 
have been successfully derived from rodents and human, 
these represent the ideal source of cell-based therapies 
therapies, raising hopes for their applications in the ϐield of 
neurodevelopmental or neurodegenerative disorders. 

Initial studies have been performed with ESCs or iPSC of 
mouse origin and then extended to the human counterpart. 
In general, these protocols are based on the exposure of PSC-
derived neuroectoderm tissue to speciϐic morphogens/signals 
known to instruct embryonic MGE cells speciϐication during 
development [79,80]. Watanabe and colleagues described 
that stage-speciϐic Wnt pathway inhibition in mouse ESCs can 
induce the generation of rostral Foxg1+ (i.e. telencephalic) 
progenitors and that their subsequent exposure to sonic 
hedgehog (SHH) drives the regionalization to a ventral Nkx2.1+ 
forebrain MGE progenitor identity [81]. Although this study 
represented a milestone in the ϐield, the efϐiciency was quite 
low and the cultures contained also Pax6+ telencephalic dorsal 
progenitors (i.e. progenitors of cortical excitatory neurons). 

Attempts to generate more pure cultures have been 
performed by exploiting reporter-based selection approaches. 
This strategy allows to better deϐine factors for effective and 
more selective MGE regionalization and demonstrates that 
while FGF8 exposure can promote MGE identity, FGF15/19 
had a negative effect, being effective in promoting CGE cell 
fates [82]. The most signiϐicative example of reporter-based 
selection approaches has been the use of Lhx6::GFP-expressing 
mouse ESCs, which allowed to select enriched populations 
of MGE progenitors in vitro [83]. This strategy showed to be 
successful (although with low efϐiciency) in generating SST+ 
and PV+ GABAergic INs in vivo and also showed their in vivo 
relevance after intracerebral transplantation [83].

It was then shown that forced expression of Nkx2.1 
resulted in higher and prolonged expression of Lhx6 and 
improved efϐiciency of cortical IN generation, in the absence 

of SHH [45]. Likewise inducing the expression of Nkx2.1, 
Dlx2 and Lmo3 resulted in an ever-higher efϐiciency of 
MGE-type IN generation, with a preference of PV+ over SST+ 
young neurons [84]. Transplantation studies using these 
neurons substantially conϐirmed these ϐindings [85]. Thus 
recapitulating the physiology of development in vitro results 
in the generation of apparently genuine INs.

Still, the differentiation of progenitors towards INs entails 
formidable problems, due to extreme diversiϐication of IN 
subtypes and their early cell fate determination. One of the 
key issues is the lack of adequate molecular and functional 
markers to fully deϐine them, and the poor knowledge on 
the temporal dynamic of their expression. Until few years 
ago INs were characterized at a population level by using 
few neurochemical markers, with the caveat that these 
analyses represents averages of cell behavior and cell states. 
While individual differences cannot be appreciated. Today 
we begin to appreciate the full complexity and variability 
of the molecular states of these neurons at the single-cell 
level [15,16]; in this respect Close and colleagues examined 
stepwise changes in gene expression proϐiles of in vitro 
differentiating progenitors, using a single cell approach, and 
then compare these with fetal cortical INsat various ages [86]. 
Their analysis yielded results that substantially conϐirm all 
key ϐinding in vivo, while at the same time pointing to novel 
disease-relevant differentiation determinants, to be included 
in future monitoring efforts.

Differently form mouse PSCs, the generation of cortical IN-
like cells from human ESCs and iPSCs lagged behind mainly 
because of the much longer time required for differentiation 
of human cells, their tendency to die after replating, and 
the lack of methods to purify IN progenitors or post-mitotic 
precursors from the mixed population that occur with every 
protocols. While some study demonstrated to capacity of 
human iPSCs to generate telencephalic-like progenitors [87], 
two studies were critical in moving the ϐield forward. First, the 
optimization of aprotocol based on the strong dual inhibition 
of the TGF pathway with the peptide noggin and the small 
molecule SB431542 during initial phases of differentiation, 
showed that neural ectoderm can be efϐiciently obtained 
from pluripotent stem cells [88]. Second, also in human, 
differential WNT signal agonism or antagonism can be used to 
drive telencephalic (Foxg1+) human ES-derived cultures into 
cortical-like (Pax6+) or MGE-like (Nkx2.1+) progenitors [89].

Now, a relatively rapid and uniform generation of 
telencephalic progenitors has been achieved. These 
progenitors can be “dorsalized” or “ventralized” into a 
variety of subϐields and differentiated into a variety of neuron 
types, including cortical INs [90-92]. While these studies are 
promising, caution needs to be applied as they show two 
major challenges towards safe and reliable generation of 
human INs. First is the protracted maturation stage of the 
human MGE progenitors to give rise to functional INs. Second, 



Advances in the use of GABAergic interneurons for the treatment of epilepsy

Published: September 04, 2019 013

only few cells actually acquire a PV+ identity, which in turn 
could be the consequence of the longer differentiation time of 
these particular neurons. As much attention is drawn towards 
this disease-relevant neuron type, our knowledge is possibly 
biased towards these neurons.

Despite the challenge in generating reliable and stable 
human INs, two studies showed some degree of efϐicacy in the 
treatment of seizure in mouse models, in vivo [93,94]. Based 
on this, research in the ϐield is rapidly proceeding trying to 
answer these crucial questions: a) can we obtain the desired 
IN type and subtype? b) can we retain their ability to establish 
inhibitory synapses on the correct neuronal targets? c) can 
we avoid long and complex protocols, inevitably leading to 
considerable cell loss and increased variability? Considering 
the high molecular variability, a valid monitoring method will 
be single cell RNAseq analyses [86].

Alternative strategies to the direct generation of INs from 
PSCs have been also developed.

Among them there is the possibility to derive stable and 
homogeneous lines of adherent neural stem cells from iPSCs 
and maintain them in monolayer culture while preserving a 
full and homogeneous commitment towards the GABAergic 
lineage [95,96]. These adherent monolayer cultures show 
limited capacity to maintain a deϐined dorso-ventral identity 
[97,98] and to generate multiple brain cell types, other than 
GABAergic neurons [99,100]. This approach has been shown 
to work also for human cells [101-103].

Finally, direct conversion strategies that allow to directly 
convert somatic cells (i.e. ϐibroblasts) into forebrain INs by 
forced expression of speciϐic transcription factors have been 
recently described [104,105]. This technique can produce 
functional forebrain INs without the requirement to pass 
through a pluripotent state but the overall efϐiciency, in 
particular for the human system, is quite limited.

The choice of cells used in models of epilepsy

Cells from various sources and maintained in different 
conditions have been tested in preclinical models of epilepsy 
following grafting into distinct regions of the brain (Figure 
1). The donor cells examined include hippocampal precursor 
cells, neural stem cells (NSCs), primary GABAergic neurons 
or GABAergic precursor cells derived from either embryonic 
LGE or MGE, or from mouse and human ESCs and iPSCs [106]. 
All these cells have been shown to modulate hippocampal 
plasticity, modify epileptogenesis, reduce the frequency of 
spontaneous recurrent seizures and alleviate related co-
morbidities, although with varying efϐiciency. The outcomes 
varied depending on the animal model employed, the timing 
of grafting intervention after the ϐirst seizures and the time-
point of measurement of SRS [106].

1. NSCs short-term expanded from the embryonic MGE 
or from the postnatal subventricular zone (SVZ) are good 

candidates as donors, being multipotent and self-renewing 
[107]. To be noted, NSC grafting implies the possibility to 
replenish both new GABAergic INs and new astrocytes into 
a brain area, the later secreting a multitude of neurotrophic 
factors and anticonvulsant proteins such as GDNF [108,109]. 
Due to their ability to engraft into the dentate gyrus and 
inϐluence hippocampal neurogenesis [107], NSCs might also 
be able to ameliorate those cognitive functions which typically 
decline in chronic TLE.

2. Cells dissociated from embryonic MGE can be maintained 
in culture and generate INs able to migrate in the host brain 
when transplanted in early postnatal mice, expressing INs 
markers PV, SST, NPY and CR [22,110]. These cells are 
characterized by the expression of markers such as NeuN, 
doublecortin (DCX) and Hu24, but they are negative for non-
neuronal markers such as glial ϐibrillar acidic protein (GFAP), 
vimentin and Olig2 [111]. Most importantly, MGE-derived 
neurons establish synapses and direct evidences suggest that 
these cells can functionally integrate and inϐluence GABA-
mediated inhibition in the host brain [110]. Moreover, in vitro 
electrophysiology studies conϐirm that these cells have ϐiring 
properties typical of mature INs [111]. 

3. Obtaining genuine INs from hiPSC to be used in cell-based 
therapy circumvents two key issues: the limited availability of 
fetal brain material and the use of autologous, patient-speciϐic 
cell [112]. hiPSC-derived MGE-like progenitors potentially 
yield both cortical-like and striatal-like GABAergic INs that 
express SST, CR, and CB. Electrophysiological analyses have 

Figure 1: Schematic representation of the main cell-based experimental strategies 
to epilepsy. 
A,B. The source of IN progenitor cells of rodent (A) or human (B) origin, used in 
experimental therapies. In rodents, most studies use progenitors obtained from 
dissociated MGE, or neurosphere derived from the same progenitors. In human, 
research is focusing on the use of iPSC derived from somatic cells as a source of 
IN progenitors to be used in cell-based therapies. 
C,D. The most widely used models of epilepsy (induced or spontaneous) and the 
corresponding experimental strategies adopted for cell-based treatments in the 
hippocampus (C) or in the cortex (D). Spontaneous epilepsy is the consequence of 
genetic manipulation disrupting disease-relevant genes. On the other side, seizure 
can be induced physically by MES, and chemically with PTZ, pilocarpine or kainate. 
Abbreviations are indicated in the text..
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shown a slow maturation of these INs. Following injection into 
the mouse brain, hiPSC-derived IN precursors dispersed from 
the injection site, matured into subtypes, and functionally 
integrated into the host cortex. They did not migrate as 
extensively as dissociated embyonic MGE cells and some cells 
remained at the injection site. This suggests that optimization 
of the iPS differentiation and/or development of methods to 
purify migratory MGE-like cells may be needed [92].

Advances in the use of GABA-committed progenitors 
in models of epilepsy

There is urgent need to develop new therapies that 
directly target epileptic foci restoring proper inhibition and 
synchronicity, rather than more systemic interventions 
[93,113]. One strategy that has been proposed in recent years 
is to restore normal circuit function by transplanting cells 
capable to differentiate into GABAergic neuronsat the seizure 
focus. This approach has been recently tested experimentally 
and validated, owing to improved tools and methods for cell 
propagation and differentiation in vitro [106,114] (Figure 1).

In this section we will illustrate the most recent develop-
ments and discuss critical issues in moving these experimen-
tal therapies into clinic. We will also highlight aspects such 
as cell-survival, migration, differentiation into INs subclasses 
and functional integration in the host network, and especially 
emphasizing the long-term effects of different grafting ap-
proaches. For clarity, we have subdivided the results of graft-
ing into the hippocampus from those obtained in the cortex, 
justiϐied by the fact that TLE, the most common type of epi-
lepsy in adults, initiates at the hippocampus. Key observations 
are summarized in table 1 (hippocampus) and table 2 (cortex).

Hippocampus: TLE in rodents can be pharmacologically 
induced by systemic injection of pilocarpine or kainic acid 
(KA). These treatments recapitulate the status epilepticus (SE), 
followed by a latent period and the subsequent appearance 
of spontaneous recurrent seizures (SRSs) representing 
the chronic phase. These treatment also induce functional 
and histoanatomical changes in the hippocampus, such as 
degeneration of dentate hilar neurons and some pyramidal 
neurons in CA1 and CA3 regions, differentiation of dentate 
granule cells, reduction in the number of GABAergic INs, 
aberrant sprouting of dentate mossy ϐibers, hippocampal 
hyperexcitability and learning and memory deϐicits 
[37,93,107,115,116]. 

A ϐirst attempt exploited an established cell line of 
uncommitted human pan-neuronal stem cells (hNSCs) 
obtained from dissociated fetal brain tissue. These cells were 
grafted in the hippocampus of rats 24 hrs after the cessation 
of pilocarpine-induced SE [31], and the anti-epileptic effects 
were evaluated 28-35 days after. The grafts resulted in a 
signiϐicant reduction of seizure frequency, duration and 
severity, associated with reduced aggressiveness. Six weeks 
after grafting, hNSCs had migrated in various hippocampal 

areas, in the amygdala and piriform cortex; 42 days later the 
number of grafted cells in CA1, CA3 and hilus was diminished, 
while it remained unchanged in CA2 and granule cell layers. 
GABAergic INs, representing 26% of grafted cells, were 
found in the hippocampus and piriform cortex, and 30% of 
these expressed PV. A small percentage of glutamatergic 
(GluR2+) and astrocytes (GFAP+) was also found in the CA1 
area. The grafted cells did not acquire granular or pyramidal 
phenotypes, suggesting that hNSCs mostly differentiated 
into GABAergic INs. This was further conϐirmed by recording 
ϐield excitatory postsynaptic potential (fESPS) in CA1 and 
stimulation of Schaffer collateral ϐibers. These experiments 
showed that the fEPSP amplitudes of hNSCs-transplanted 
group was signiϐicantly smaller compared to controls. Thus, 
the attenuation of seizure was associated with an enhancement 
of inhibition due to increased GABAergic activity in the 
damaged hippocampus [31]. In this study, the long-term fate 
of the transplanted cells, in terms of survival, senescence and 
stability of the differentiated phenotype, was not assessed. 

In a subsequent study, GABAergic progenitors obtained 
from dissociated mouse embryonic LGE were used [117]. 
The cells were pre-treated with FGF2 and caspase inhibitor 
bilaterally grafted into the hippocampi on KA-treated rats. 
Graϐing was done four days after the appearance of SE. The 
majority of surviving grafted cells (33% of the total) differented 
into NeuN+ cells, a large percentage of which was GABAergic, 
further subdivided in CB+, PV+, CR+ and NPY+ neurons (Table 
1). This study performed a long-term follow-up, i.e. 9-12 
months after grafting, and showed a much reduced frequency 
(between -67 and -89% compared to controls) of SRSs but 
observed no rescue of the aberrant mossy ϐiber sprouting 
[117]. Interestingly, although the LGE is not the physiological 
source of cortical and hippocampal INs, these results suggest 
that LGE and MGE progenitors are interchangeable when 
used as a source of cells for grafting, reasonably because their 
behavior might be strongly context-dependent. 

MGE-progenitor cells dissociated from mouse embryonic 
brains were also used for transplantation studies into the 
hippocampi of adult mice, 9-20 days after pilocarpine-induced 
SE [115]. Starting from 7days after transplantation the grafted 
cells exhibited a bipolar migratory morphology and showed 
a survival rate of >30%. Sixty days after grafting, cells were 
found to participate in host inhibitory local circuits, with a 
survival rate of about 15% and showing features of mature INs. 
Within 2 months, the grafted cells differentiated into GAD67+ 
INs, expressing a wide set of neurochemical markers including 
SST, nNOS and PV (Table 1). Very few cells expressed glial 
lineage markers. The authors characterized the grafted cells 
for their electrophysiological properties and RNA expression 
proϐiles. The proϐiling results (26% fast spiking, 41% regular 
nonpyramidal spiking, 9% late spiking and 24% burst spiking; 
all expressing gene markers typical of the MGE lineage of INs 
such as Lhx6) were consistent with an MGE-derived mature IN 
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Table 1: Grafting approaches in the hippocampus.
Tissue  Of 

Origin Transplanted Cells Transplantation 
Strategy Engraftment And Migration(1) Neuromarkers Phenotypic Effects(2) Reference

hNSC hNSC

mouse model: 
pilocarpine 
how many:

5 x 106 cells in 500μl

42 DAT (3): cells found in CA1, 
hilus, dentate gyrus, CA3, 

amygdala and piriform cortex

42 DAT: 26% GABA+; 2% 
GluR2+; 2% GFAP+

1 MAT (4): increase of GABA inhibition; 
reduction of seizure frequency, 

duration and severity 
31

LGE GABAergic progenitors

mouse model:
kainic acid 
how many:

8 x 104 cell/μl/site

12 MAT: cells found partly 
inside the hippocampus and 
partly in the lateral ventricle

12MAT: 69% GABA+ (30% 
CB+, 29% PV+, 31% CR+ 

and 8% NPY+)
9-12 MAT: 67-89% reduced seizures 117

MGE MGE progenitors

mouse model: 
pilocarpine 
how many: 

3 x 104 cells/injection

7 DAT: MGE-cells migration; 
60 DAT: cells localized in 

host inhibitory local circuits; 
functional integration into 

hippocampal network 
(spontaneous excitatory post-

synaptic currents)

2 MAT: 92% NeuN+; 63% 
GAD67+; 41% SST+; 21% 

NOS+; 7.7% PV+; 1.8% 
olig2+; 1% GFAP+

60 DAT: 92% reduced seizure 
frequency and behavioral 

comorbidities 
115

MGE MGE progenitors

mouse model: 
pilocarpine 
how many: 

3 x 104 cells/injection

210 DAT: MGE-cells migration; 
270 DAT: functional integration 

into hippocampal network 
(spontaneous excitatory post-

synaptic currents)

6-7-12 MAT: Tuj1+; 
GA67+; SST+, PV+, NOS+

2-6-12 MAT: increase of GABA  
inhibition; reduced seizure frequency, 

rescue of behavioral defi cits
118

MGE

MGE-derived 
neurospheres (GF): 

2,7% bTub +; 20-30% 
GFAP-Nestin

mouse model: 
pilocarpine 
how many:

400 cells/4μl per 
animal

120 DAT: migration in DG and 
CA1

 120 DAT: 1,9% NPY+; 2,4 
% PV+; 0,7% CR+; 5,6% 

GFAP+

90 DAT: 
reduced seizure frequency (glia-

mediated)
119

MGE

MGE-derived 
neurospheres (GF-RA): 
20% Tub; 10% GFAP 

30% nestin

mouse model: 
pilocarpine 
how many:

400 cells/4μl per 
animal

120 DAT: migration in DG and 
CA1

120 DAT: 1,5% NPY+; 2% 
PV+; 3,4% CR+; 3% GFAP+

90 DAT: no anticonvulsant effects and 
lower cell-survival rate 119

MGE MGE progenitors

mouse model: 
pilocarpine 
how many:

400 cells/4μl per 
animal

120 DAT: migration in DG and 
CA1

120 DAT: 12% NPY+; 7% 
PV+; 6% CR+; 0,7% GFAP+

90 DAT: 
reduced seizure frequency (IN-

mediated)
119

hESC MGE-like progenitors

mouse model: 
pilocarpine 
how many:

5x104 cells in a 0.5 
μl/site

14 DAT and 4MAT: migration; 
2-5 MAT: integration into 

hippocampal network

14DAT: 80% GABA+ 
(Nkx2.1; NeuN+; Lhx6);

4 MAT: 80% GABA+ 
(Nkx2.1; Sox6; Lhx6; SST; 

CB; PV; CR; NPY; VIP);

3 MAT: reduced seizure frequency 
and rescue of behavioral defi cits, of 
GABA release and induced inhibitory 

postsynaptic responses in host 
neurons;  excitatory synaptic inputs 

from host glutamatergic neurons

93

hiPSC MGE-like progenitors

mouse model: 
kainic acid 
how many:

8-10 x 104 cells/
μl/ site

5 MAT: proliferation and 
migration in DG, CA1 and CA3
Integration into hippocampal 

network (formation of 
synapses between transplanted 

and host excitatory neurons)

5 MAT:  86% NeuN+: 76% 
GABA+ (27% PV+, 11% 

NPY+)

5 MAT: reduced seizure frequency, 
duration and severity; reduced 

anhedonia and cognitive defi cits
112

MGE NSC

mouse model:
 kainic acid 
how many:

8-10 x 104 cells/
μl/ site

migration in DG NeuN+; GABA+; GFAP+; 
NG2+

reduced seizure frequency, duration 
and severity 107

(1): Effects of cells integration in host brain after transplantation. (2): Effects related to seizure and/or behavioral comorbidities. (3): DAT: days after transplantation. (4):  
MAT: months after transplantation.

Table 2:  Grafting approaches in the neocortex.
Starting cells Transplanted cells Transplantation strategy Engraftment and migration(1) Neuromarkers Phenotypic Effects(2) Reference

MGE MGE progenitors
mouse model: WT

how many:
4 × 105 cells/mouse

30-40 DAT (3): cells dispersed 
in cortex and integrated in the 

network

30 DAT: GABA+; 
GAD67+; CR+; PV+; 

NPY+; SST+

1 MAT (4): MGE-derived 
neurons receive inputs 

from host brain neurons, 
establish synaptic contact 

with dendrites of host 
neurons

110

hPSCs MGE-like progenitors

mouse model: 
WT 

how many: 
1-10 x 104 cells/ injection site

6-7 MAT: 
cells migrated and integrated 

in the cortex; received 
synaptic inputs, generated 

GABAergic  synaptic output

6 MAT: 53% LHX6+; 
51% GABA+; 61% CB+; 

72% CR+; 50% SST+ 
and rare PV+

N/A 92

MGE MGE progenitors

mouse model: 
Kv1.1−/− mice
how many:

4 × 105 cells/mouse

30-40 DAT: 
cells dispersed in cortex and 

integrated in the network

30 DAT: 65% GABA+; 
29% PV+; 44% SOM+; 
10% NPY+; 5% CR+

1 MAT: reduced seizure 
activity 110
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phenotype. The authors reported a 92% reduction in seizure 
frequency but no rescue of aberrant mossy ϐiber sprouting, 
in accordance with previous results [115]. The therapeutic 
effects were analyzed only in a two-month time scale.

Adopting a similar experimental paradigm, another study 
used freshly dissociated MGE-derived progenitors grafted in a 
model of pilocarpin-induced seizure, and monitored the effect 
at 7 and 12 months after transplantation [118]. At 7 months, 
the grafted cells were differentiated into GAD67+ neurons 
expressing SST, PV and nNOS (Table 1). Two months after 
grafting, the animals showed seizures suppression and rescue 
of behavioral comorbidities; at 6 months seizures frequency 
was reduced by 84% and at 12 months the seizures total 
number was reduced by 88%. The authors also documented 
enhancement of GABAergic IN-mediated currents suggesting 
a functional integration in the host network [118].

In a recent study, MGE-derived dissociated progenitor 
cells were used in grafting experiments and compared to 
MGE-derived neurospheres for their anticonvulsant effects 
in a model of pilocarpine-induced TLE [119]. Speciϐically, 
the authors compared three in vitro states of the grafted 
cells: fresh MGE-cells; MGE-derived neurospheres cultured 
with growth factors and retinoic acid (GF-RA group); or the 
same cultured without retinoic acid (GF group). While the 
GF-RA group resulted in increased neuronal population in 
vitro, only the GF-neurospheres and freshly dissociated MGE 
cells showed anticonvulsant activity. Both groups showed 
reduced seizure frequency 3 months after the grafting, but 
apparently by different mechanisms: GF-neurospheres 
efϐiciently differentiated into INs and glial cells with equal 
efϐiciency, freshly dissociated MGE cells mainly differentiated 
into INs, with only 0.7% of GFAP+cells (Table 1). Thus, the 
anticonvulsant effects of GF-neurospheres seems to be glial-
mediated, while freshly dissociated MGE cells appear more 
appropriates for cell-therapy treatment of epilepsy, targeting 
the inhibitory circuitry [119]. In this study only short-term 
effects were examined, and cell differentiation, senescence 
and survival were not assessed on the long-term.

On the whole, these studies indicate that grafted embryon-
ic MGE cells are effective in reducing seizure frequency, dura-
tion and severity, as well as in alleviating behavioral co-mor-
bidities. However, for clinical application cells sources must 
be standardized, well characterized, quality-controlled and 
unlimited in supply. For these reasons and for strong ethical 

issues, human embryonic MGE-cells cannot be routinely ex-
ploited. To overcome this limit, human iPSC have been tested 
as a valid and promising alternative. hiPSC-derived GABAer-
gic INs were shown to be able to migrate and integrate into 
dysfunctional circuitry in mice with pilocarpine-induced TLE, 
and to generate inhibitory postsynaptic responses in host 
hippocampal neurons [93]. Two weeks post transplantation, 
grafted cells were found to primarily cluster near the injection 
site, with nearly 80% of cells expressing GABA, and a large 
fraction of these scoring positive for Nkx2.1, NeuN and Lhx6 
(Table 1). Four months post-injection hiPSC-derived INs had 
migrated and integrated in the host circuitry, without signiϐi-
cant differences in the total number of surviving cells. At this 
time-point, 80% of the grafted cells were bona- ide GABAer-
gic INs (expressing Nkx2.1, Sox6, Lhx6 and GABA) and scored 
positive for the subtype-speciϐic markers SST, CB, PV, CR, NPY 
and VIP (Table 1). All transplanted cells showed reduced posi-
tivity for glial markers, suggesting a proper IN differentiation. 
Overall, the approach suppressed seizures and ameliorated 
behavioral abnormalities, providing a ϐirst evidence of hiPSC 
application in the management of intractable epilepsy [93]. 
Similar results were recently published using hiPSC-derived 
MGE-like progenitor cells transplanted into the hippocampi of 
KA-treated rats [112]. The authors found that the grafted cells 
proliferate immediately after grafting, then migrate into DG, 
CA1 and CA3 subϐields, were they differentiated in GABAergic 
INs with high efϐiciency (80%) and integrate into the host net-
work forming synapses with excitatory neurons. The grafting 
resulted in reduction of aberrant neurogenesis, and a signiϐi-
cative reduction of seizure frequency, duration and severity, 
as well as anhedonia and cognitive disfunctions [112].These 
effects, however, were analysed only in the short-term.

In summary, current data show that MGE-derived cells 
efϐiciently migrate and differentiate into GABAergic INs, 
able to functionally integrate in the host brain network 
when transplanted into the hippocampus of various models 
of epilepsy. The overall effect is a reduction of seizures 
occurrence and severity, associated with increase inhibitory 
activity. We should note, however, that most of the published 
studies observe cell and phenotypes in the short-term, 
while long-term analyses are very limited. Furthermore, all 
studies adopt a pharmacological induction of SE, which is 
difϐicult to relate this to epilepsy in human, characterized by 
spontaneous seizures caused by a combination of genetic and 
environmental factors.

MGE MGE progenitors

mouse model: 
MES

how many:
5 x 104 cells/mouse

60 DAT: 
cells migrated to cortex, 

hippocampus, striatum, SVZ, 
corpus callosum

60 DAT: NPY+; CR+; 
PV+

60 DAT: protection against 
tonic seizures and reduced 

mortality rate
120

MGE MGE-derived 
neurospheres

mouse model: 
PTZ and MES 

how many:
5–15 × 104 cells in 0.4 μl

60 DAT: 
cell migrated to piriform 

cortex, fi mbria and ventricular 
wall 

60 DAT: PV+

2 MAT: protection against 
PTZ-induced seizures, but 
not against MES-induced 

seizures.

121

(1): Effects of cells integration in host brain after transplantation. (2): Effects related to seizure and/or behavioral comorbidities. (3): DAT: days after transplantation. (4):  
MAT: months after transplantation.
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Neocortex: The epileptic brain is characterized by a 
disfunction in excitatory-inhibitory balance that also involves 
the neocortex [50]. Thus, several studies focused on the 
effects of cell grafting directly into the cortex and the effect 
of this procedure on cortical circuity. The main results are 
summarized in table 2.

In an early study, MGE progenitor cells were dissociated 
from embryonic MGE and bilaterally transplanted into the 
cortex of wild-type mice; one month after transplantation cells 
were found to be migrated and dispersed in the host cortex 
and differentiated into GABAergic INs and their subclasses, 
the largest proportions being PV+ and SST+ [110] (Table 2). 
Grafted cells, speciϐically starting from 7-10 days after grafting, 
acquired intrinsic membrane properties of immature INs and 
30-40 days after transplantation an increased inhibition of II/
III layers pyramidal neurons was shown, while not changes in 
inhibition by host INs. This potentiation of inhibition involves 
postsynaptic GABA receptors and provides evidence that 
grafted cells integrate in brain circuits, receive inputs from 
host brain neurons and form synaptic contacts onto their 
dendrites primarily targeting excitatory pyramidal neurons 
[110]. 

In a subsequent study, hiPSC-derived MGE-like cells were 
grafted into the cortex of newborn SCID (severe combined 
immunodeϐicient) mice, and monitored thereafter [92]. The 
results show that these MGE-like cells survived in the brain 
after 2, 4 and 7 months, with an average surviving rate of 
5%, 3% and 8% respectively. Two months post-injection 
grafted cells were found to proliferate and to express the 
immature neuroblast marker DCX+, while at 3 and 7 months 
post-injection cells had migrated in the cortex. By 7 months 
post-injection, the grafted cells were seen to express NeuN, a 
marker of more mature neurons. From a functional point of 
view, mature hiPSC-derived INs ϐired subtype-speciϐic trains 
of action potentials, received synaptic inputs, generated 
GABAergic-exclusive synaptic output, and functionally 
integrated into the rodent cortex [92].

Three main types of animal models of cortical epilepsy 
have been used to test the efϐicacy of cell-based strategies: 
a) genetically induced, b) induced by maximal electroshock 
(MES), c) induced by pharmacological treatment with 
pentylenetetrazole (PTZ).

a) the most used genetic model of cortical epilepsy is 
the Kv1.1/Kcna1 mutant mouse strain; these animals lack 
a shaker-like potassium channel and mimic a neuronal ion 
channelopathy associated with epilepsy in humans [110]. 
Freshly dissociated MGE progenitors were grafted into the 
cerebral cortex of P2 Kv1.1/Kcna1 mutant mice resulting in a 
reduced frequency and duration of spontaneous EEG seizures 
2 months after transplantation. Almost 65% of grafted cells 
differentiated in GABAergic INs, and expressed the subtype-
speciϐic markers PV, SST, NPY and CR [110].

b) the maximal electroshock (MES) model relies on the 
application of an alternating current causes a generalized 
tonic–clonic seizures [120,121]. Adopting this model, freshly 
dissociated MGE progenitors transplanted into the brain 
cortex 2 months after MES-induced seizure were shown 
to protect against tonic seizures and reduce the mortality 
rate [120]. On the contrary, cells dissociated from the MGE 
but then maintained and expanded in vitro as ϐloating 
neurospheres showed strikingly different results in the MES 
model: unlike freshly dissociated MGE cells, neurosphere-
expanded progenitors had no effects on seizures frequency 
[121], despite both experimental groups used a comparable 
number of cells injected bilaterally in the cortex. Thus, in the 
MES model transplantation of precursors dissociated directly 
from MGE is more efϐicient in reducing frequency and intensity 
of tonic seizures.

From a cellular point of view, in both studies, two months 
after injection grafted cells efϐiciently survived, migrated and 
differentiated into INs. However, the migration sites are dif-
ferent between these studies: Calcagnotto and colleagues 
found grafted cells in cortex, hippocampus, striatum, subven-
tricular zone and corpus callosum, while Paiva and colleagues 
found INs throughout the brain parenchyma (piriform cor-
tex, fimbria, and ventricular zone). Moreover, Paiva and col-
leagues examined only the PV+ cells, while Calcagnotto and 
colleagues evaluated the morphology and the expression of 
more IN markers including NPY+, CR+ and PV+ cells [120,121].

c) The pha rmacological model based on treatment with 
pentylenetetrazole (PTZ) induces clonic or tonic–clonic 
seizures, by acting on GABA-A receptors and impairing 
local inhibition. Grafting of MGE progenitors maintained as 
neurospheres in the neocortex of PTZ-treated animals resulted 
in a protective effect from seizure [120,121]. These grafted 
cells showed a high rate of survival and of PV+ differentiation 
as compared to the same cells transplanted into mice that 
underwent MES [121]. 

Based on the available results, it can be concluded that 
neural progenitors maintained as neurospheres are not 
ideal, as compared to fresh isolated or in vitro-expanded 
progenitors from MGE. However, this seriously hampers the 
applications in human therapy, due to the limited availability 
of fetal tissues. 

Concluding remarks and perspectives

The reported studies show that MGE-derived cells 
efϐiciently migrate and differentiate into GABAergic INs, able 
to functionally integrate in the host brain network when 
transplanted into hippocampus or cortex of various models 
of epilepsy. The overall effect is a reduction of seizures 
occurrence and severity. Electrophysiological recordings 
reveal that exogenous INs functionally integrate in the host 
circuity providing increased inhibitory activity, although 
not all authors investigated this aspect. Importantly, the 
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anticonvulsant efϐicacy of grafted cells seems to largely 
depend on the mode of collecting and expanding these cells: 
whether from primary dissociated MGE embryonic tissues 
[110,115,118-120], from neurosphere-expanded MGE 
progenitors [119,121], from differentiated hIPSC [92,93,112], 
or from hNSC [31]. Among these, the use of dissociated MGE 
cells seems to be the most valid and applied strategy. Studies 
on differentiation and transplantation of hiPSC-derived cells 
are likely to lead to signiϐicant improvements in the next few 
years.

Concerning the translation to the human setting, one issue 
that has to be taken into account is the animal model of epilepsy 
or TLE that have been used so far. Models of epilepsy induced 
by drugs, although easily standardized and quantiϐiable-
and thus adopted in scientiϐic studies –only partially and 
imprecisely represent human conditions. In alternative, 
genetic models in rodents (knock-out or transgenic), in which 
congenital chronic epileptic syndromes result from a known 
inherited genetic lesion, have been introduced [65]. Although 
these are certainly closer to reality, the issue that emerges 
is the existence of numerous, rare epileptic syndromes, with 
quite distinct and peculiar phenotypic manifestations. Each 
genetic model will only represent a single and speciϐic human 
condition, certainly not the full spectrum and not the majority 
of conditions, which are rather sporadic or with multigenic 
risk determinants.

Most studies have demonstrated survival and differen-
tiation of the grafted cells in the short- or medium-term (2-6 
months), but not in the long-term; with the exception of two 
studies that prolonged the analyses to 12 months [117,118]. 
Information on long-term cell survival, differentiation and cir-
cuit integration is the next important step, in order to better 
evaluate the translation value of these experimental therapies 
in view of future clinical applications and to understand if 
they have a transient short-term effect or a long-term efϐicacy. 
In the perspective of clinical trials, a transient therapeutic ef-
fect is clearly insufϐicient.

The follow up of the grafted progenitors or the immature INs, 
monitoring their proliferation, stability of the differentiated 
phenotype, senescence and apoptosis, is another key task. In 
the rodent brain cells labeled with ϐluorescent markers can be 
used for in vivo imaging, and single neurons can be visualized 
and subjected to neuro chemical and electrophysiological 
analyses. The PV+ and SST+ neurons are the most studied ones, 
however the repertoire of IN subtypes is much wider, and the 
contribution and/or involvement of each of these in seizure 
is not fully known. Upon grafting, we are currently unable 
to monitor all IN subtypes, and consequently their survival, 
senescence and differentiation is not really known. It is likely 
that we are still missing some important contribution, and 
this could also be the reason for discrepancies in the results 
from lab to lab.

Likewise, which and how each IN subtype participates 
and contributes to epilepsy is not fully understood. Although 
PV+ neurons appear to be more directly implicated and are 
observed after grafting, this could simply reϐlect the fact 
that they are mostly studied as compared to other types. If 
we knew better which types participate and how, we could 
adopt in vitro procedures that can be able to lead and expand 
that kind of progenitors, avoiding unnecessary mix of cells. A 
deeper knowledge of the main actors in the epilepsy’s seizure 
context would be necessary to develop a better and more 
speciϐic therapeutic approach. This could in principle be done 
using optogenetic methods, which these consents to activate 
or inihibit speciϐic subpopulation of neurons in vivo with 
unprecedented time-resolution [60].

In parallel, strong efforts in basic and applied research 
on neural progenitor cells are needed to fully unravel the 
differentiation trajectory of each IN subtypes in vitro [11,86] 
and to optimize expansion and differentiation protocols 
aimed to obtain the speciϐic IN subclass required, reliably 
and reproducibly. One important advancement will be the 
development of human cell models of seizure, either deriving 
hiPSC from patients carrying known mutation in epilepsy–
relevant genes, or introducing the same mutations via genome 
editing (CRISPR-cas9). These cells could then be used in 
research (set up mixed cultures of excitatory and inhibitory 
neurons or mixed cortical and basal brain organoid). Once 
validated, these cells could open to way to screening efforts 
for the search of novel compounds. 
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