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Introduction

In late December 2019, an unprecedented outbreak 
of pneumonia emerged in Wuhan City, Hubei Province in 
China. The infection was caused by a novel beta coronavirus 
which was initially called severe acute respiratory syndrome 
(SARS-CoV-2), then it was named coronavirus disease-2019 
(COVID-19) by the world health organization (WHO) 
[1-4]. Due to the continuous and rapid rise in the incidence 
of COVID-19 worldwide and due to the massive human life 
losses as well as the huge impact of the infection on world 
economy, the WHO declared COVID-19 a pandemic on March 
11th, 2010 [3-5].

The incubation period ranges between 2 and 14 days 
[3,4]. The clinical manifestations of COVID-19 include: 
fever, cough, shortness of breath, sore throat, fatigue, 
nausea, vomiting, and diarrhea. However, the illness may be 
complicated by: severe pneumonia, acute respiratory distress 
syndrome (ARDS), and respiratory failure; acute cardiac 
decompensation, arrhythmias, and heart failure; secondary 
bacterial infection; acute renal and liver dysfunction followed 
by multiorgan failure; sepsis and septic shock; and death [1,3-
5]. Although the detailed immunopathogenetic mechanisms 
have not been fully elucidated, the main pathological ϐindings 

that have been described include: diffuse alveolar damage 
in the lungs manifested by severe pneumonia; immune 
dysregulation; infection of the cells expressing the surface 
markers angiotensin converting enzyme (ACE)-2 and TMPRSS2 
protein; recruitment of several inϐlammatory and immune 
cells including monocytes, macrophages, T-lymphocytes, 
neutrophils, and B-lymphocytes; and massive production of 
inϐlammatory cytokines and chemokines [2,6].

Unfortunately, no speciϐic antiviral treatment is 
recommended and there is no available vaccine so far 
[1,5,7]. The available therapeutic interventions include: (1) 
symptomatic measures and supportive care; (2) administration 
of oxygen via mask, non-invasive ventilation, endotracheal 
intubation and mechanical ventilation; (3) management of 
septic shock and secondary bacterial infections; (4) several 
antiviral and anti-inϐlammatory drugs have been repurposed 
and these include: corticosteroids, interferons, chloroquine, 
ribavirin, lopinavir, ritonavir, remdesivir, and arbidol; (5) 
monoclonal antibodies such as tocilizumab which is used 
in the treatment of cytokine release syndrome to inhibit 
interleukin (IL)-6; (6) ACE inhibitors; (7) Chinese traditional 
medicines; (8) convalescent serum or plasma containing virus 
antibodies; (9) auxiliary blood puriϐication therapy; and (10) 
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cellular therapies including the use of mesenchymal stem 
cells (MSCs) [1,2,5-7]. However, studies have shown that 
combination of several therapeutic modalities appear to be 
more successful than using single agents [1,5,7].

Neutrophils

Neutrophils are classically considered as essential players 
in host defense against invading pathogens [8]. They are: the 
most abundant leukocytes in the peripheral circulation, the 
key components of the effector and regulatory mechanisms 
of both the innate and adaptive immune responses, and 
the ϐirst cells to migrate to the sites of infection and sterile 
inϐlammation in order to exhibit a wide range of sophisticated 
functions including NETosis, which is the release of neutrophil 
extracellular traps (NETs), and killing microorganisms by 
phagocytosis [9-14]. The short half-life of neutrophils in 
the circulation, which is approximately 4 hours, is balanced 
by their continuous and tightly controlled release from the 
bone marrow [12]. Neutrophils reaching the circulation 
are: equipped with the proteins that are required to kill 
microorganisms and directed by cytokines into the infected 
cells [15]. In response to infection, polymorphonuclear 
leukocytes (PMNLs) are recruited to the sites of infection and 
they employ the following 3 major strategies to ϐight various 
microbes: phagocytosis, degranulation, and NETosis [16-18].

Neutrophils have various types of granules that contain 
hundreds of proteins, enzymes and other substances with 
important effects on innate and adaptive immune responses 
and these include: α-defensins, lactoferrin, neutrophil elastase, 
myeloperoxidase, citrullinated histone H3, human cathelicidin 
antimicrobial peptide LL-37, and human cathelicidin cationic 
antimicrobial protein-18 (hCAP18) [9,11]. Neutrophils target 
pathogens by diverse mechanisms that include: phagocytosis, 
pinocytosis, cytolysis, cytotoxicity, NETosis with the extrusion 
on an extracellular chromatin meshwork, generation of 
reactive oxygen species (ROS), and release of microbicidal 
molecules from cytoplasmic granules [12,15,19-22]. During 
infection, neutrophils can undergo beneϐicial suicide resulting 
in the production or release of NETs in order to combat 
invasion by pathogens [13].

Several studies have shown that, during overwhelming 
infections and severe sepsis, not only that neutrophils 
become dysfunctional or even paralyzed but also that their 
antimicrobial arsenal may contribute to further tissue damage 
and organ failure so that the host becomes unable to contain 
or eliminate the infection [8,23-26]. In patients with severe 
inϐlammation, infectious complications may develop even in 
the presence of neutrophilia as dysfunction of neutrophils will 
ultimately result in inability of the host to clear the existing 
infection [26]. Hence, in immunocompromised patients having 
neutropenia with severe sepsis and overwhelming infections, 
host immunity can be boosted further by donor granulocyte 
transfusions and intravenous immunoglobulins [27-30]. 

New concepts on neutrophils and their functions: 
Traditionally, neutrophils have been considered as short-
lived, relatively homogeneous population and as terminally 
differentiated cells that do not recirculate [31]. However, 
recent studies have shown that neutrophils may differentiate 
into distinct subsets deϐined by: speciϐic phenotype and 
functional proϐile with well-deϐined genomic and molecular 
markers under certain physiological as well as pathological 
circumstances that include: cancer, sepsis, trauma, ischemic 
reperfusion injury in addition to ageing and transformation of 
neutrophils [31-34]. As early as the year 1920, it was realized 
that circulating neutrophils could show signiϐicant differences 
in parameters such as phagocytosis, protein synthesis, and 
oxidative metabolism [31]. Additionally, neutrophils can 
exhibit reverse transmigration and reenter the circulation after 
shifting their phenotype towards a proinϐlammatory state with 
longer life span of about 5.4 days and this may ultimately lead 
to dissemination of systemic inϐlammation [31].

Studies have shown that neutrophils are involved in: 
(1) activation and maturation of macrophages, monocytes and 
dendritic cells (DCs), (2) regulation of T-cell immune responses 
against various pathogens and tumor antigens, and (3) complex 
bidirectional interaction or crosstalk with macrophages, 
T-lymphocytes, natural killer cells, MSCs, platelets, and 
B-lymphocytes [33-35]. Many of the effector functions of 
neutrophils are regulated by a series of immunoreceptors on 
the plasma membranes [36]. Progress in understanding the 
heterogeneity and plasticity of neutrophils, determination 
of speciϐic neutrophil subtypes, and the identiϐication of the 
interactions mediated by the immunoreceptors of neutrophils 
may be helpful in the diagnosis of speciϐic diseases and in the 
development of novel therapeutic interventions [31,32,36].

Neutrophils in viral infections: Neutrophils are capable 
of recognizing viruses via viral pathogen-associated molecular 
patterns (PAMPs) and they respond to viruses with speciϐic 
effector functions [39]. The number of neutrophils in the 
lower respiratory tract in patients with severe pneumonia 
correlates with disease activity but may contribute to ALI 
and other detrimental effects to the host [37,38]. In a mouse 
model, systemic administration of virus analogs or poxvirus 
infection may induce recruitment of neutrophils to the sites of 
infection in order to release NETs that can protect host cells 
from virus infection [39]. Mechanisms by which neutrophils 
contribute to clearance of viral pathogens include: virus 
internalization and killing; interaction with other immune 
cell populations; release of cytokines, chemokines, and 
antimicrobial components; viral sensing by cytosolic RNA 
helicases; and NET formation which may further mediate 
antiviral defense by trapping and inactivating viruses [38]. 

The cytokines induced by PAMPs and produced by 
leukocytes are predominantly inϐlammatory and they include: 
tumor necrosis factor (TNF)-α, IL-6, and IL-1 components 
[38,40]. Production or release of inϐlammatory cytokines and 



Neutrophils, NETs, NETosis and their paradoxical roles in COVID-19

https://www.heighpubs.org/jsctt 005https://doi.org/10.29328/journal.jsctt.1001020

chemokines is the siren of neutrophil recruitment to the sites 
of infection and inϐlammation. However, in patients having 
severe pneumonia or sepsis, accumulation of neutrophils in 
the microcirculation leads to excessive cytokine release or 
cytokine storm that can lead to deleterious complications and 
poor clinical outcome [41-43]. Therefore, neutrophils may be 
a keystone species in determining the outcome of viral disease 
[37,38]. 

Recently, it has been shown that viruses act as triggers 
of the process of NETosis [44-47]. However, virus-induced 
NETosis can act as a double-edged sword: on one hand 
making mechanical entrapment of the virus while on the 
other hand causing harm by the release of NETs triggered by 
the inϐlammatory and immunological reactions. Additionally, 
virus-induced NETs can circulate in an uncontrolled manner 
leading to an extreme systemic response manifested by 
production of cytokines, chemokines, and immune complexes 
that favor inϐlammation [44]. Neutrophils as well as NET 
formation play important roles in Dengue virus infections in 
humans [48,49]. In addition to the induction of thrombosis, 
NETs may acquire proinϐlammatory roles and cause damage 
to the activated human endothelial cells [50].

Immunological and hematological changes in COVID-19

Several studies on COVID-19 have shown the following 
abnormalities: (1) dysregulation of immune responses; 
(2) functional exhaustion of cytotoxic lymphocytes; and (3) 
abnormal peripheral blood picture including: low blood 
counts of lymphocytes, monocytes, eosinophils, and basophils; 
low hemoglobin level; low platelet count; leukocytosis or 
leukopenia; high neutrophil: lymphocyte ratio (NLR); and 
high monocyte: lymphocyte ration [51-55]. Also studies have 
shown that high NLR and lymphopenia are independent 
risk factors for: disease severity, poor clinical outcome, and 
mortality [51,53,54].                                  

NETs

NETs are threads or web-like structures of unique 
extracellular DNA framework, decorated with antimicrobial 
peptides or proteins released from cell death of activated 
neutrophils to trap, degrade, ϐight, and kill pathogens 
[14,56-59]. So, NETs are extracellular structures composed 
of chromatin and granule proteins that bind and kill 
microorganisms [15,19]. NETs arise from neutrophils that 
have activated a cell death program called NETosis or NET 
cell death [19,59]. Upon stimulation, nuclei of neutrophils 
lose their shape, the nuclear envelope and granule membrane 
disintegrate and ϐinally NETs are released when the cell 
membrane breaks [15]. NETs; which trap, immobilize, 
and then destroy microbes; are one of the most important 
discoveries in immunological research in recent years 
[10,60]. Historically: NETs were ϐirst reported to kill bacteria 
by degrading their virulence factor by Brinkmann V. et al in 
2004. Although NET formation was discovered in 1996, the 

term NETosis was ϐirst coined by Steinberg and Grinstein to 
describe suicidal NETosis [10,17,18,61-64].

It is unknown whether NET formation takes place in 
bloodstream or in body tissues [56]. Pathogens are trapped, 
immobilized within viscous web-like structures and 
inϐluenced by high concentrations of antimicrobial compounds 
such as: neutrophil elastase, histones, and myeloperoxidase 
[57]. NETs; which are composed of degraded chromatin and 
granule of neutrophil origin; may play important roles in 
innate immunity against microbial infections [9,58]. Factors 
that have been demonstrated to inϐluence NET pathways 
include: (1) internal factors such as production of ROS and 
activation of transcription factor, and (2) external factors 
such as alkaline PH and hypertonic conditions [56]. During 
sepsis, NETs promote pyroptosis or regulated cell death of 
macrophages [16]. In patients with septic shock, unstimulated 
NET formation and nuclease activity are reduced [20].

The formation of NETs can be in luenced by: (1) 
microorganisms such as bacteria, viruses, fungi, and parasites; 
(2) cytokines such as IL-8 and TNF-α; (3) antimicrobials such 
as amoxicillin; and (4) chemicals such as calcium ionophore 
A23187 and phorbol myristate acetate (PMA) [10,13,57]. The 
key enzymes that are involved in NET formation include: (1) 
neutrophil elastase which degrades intracellular proteins 
and triggers nuclear disintegration; (2) peptidyl arginine 
deiminase type 4 (PAD-4) which citrullinates histones to 
facilitate the decompensation and release of chromosomal 
DNA; (3) gasdermin D which generates pores in the 
membranes of neutrophils thereby facilitating cell membrane 
rupture and expulsion of DNA and associated molecules; and 
(4) myeloperoxidase granule enzyme [21,65,66].

Antimicrobial activity of NETs can be measured by 
different methods including: (1) induction of the formation 
of NETs then addition of microbe and ϐinally assessment of the 
number of surviving bacteria after an incubation period, and 
(2) measuring microbial killing by blocking NET components 
with antibodies or cation chelators such as zinc [18]. Statins 
have been found to enhance the formation of phagocyte 
extracellular traps [67].

NETs can inactivate virulence factors or microbial proteins 
that modify the function of host cells [18,61]. Fully hydrated 
NETs have a cloud-like appearance and they occupy a space 
which is 10 to 15 times larger than the volume of the cells they 
originate from [18]. Identiϐication or detection of NETs might 
serve as a biomarker that could help in identifying individuals 
at high risk of developing consequences of acute lung injury 
(ALI) and acute kidney injury (AKI) [68,69]. Methods that 
can be used to quantify or visualize NETs include: high 
resolution scanning by electron microscopy; intravital 
photon microscopy; ϐlowcytometry; ϐluorescent labelling 
of microorganisms by direct visualization; immunostaining 
and automated microscopy using computer-assisted analysis 
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to quantify NETs from ϐluorescence images; and machine 
learning using conventional neural networks [10,17,18,61-
64].

The dark side of NETs: In addition to their antimicrobial 
actions, NETs have a dark side reϐlected by their 
involvement in certain diseases or complications such as: (1) 
autoimmunity and autoimmune disorders such as systemic 
lupus erythromatosis, rheumatoid arthritis, and psoriasis; 
(2) pregnancy associated disorders such as preeclampsia; 
(3) cystic ϐibrosis; (4) coagulopathy and thrombosis; (5) 
periodontitis; and (6) tissue injuries [10,13,14,18,50,65,75-
79]. NETs have prothrombotic properties by stimulation 
of ϐibrin deposition and increased NET levels correlate 
with larger infarct size and predict major cardiovascular 
complications [78]. Additionally, excessive NET formation 
can trigger a cascade of inϐlammatory reactions that destroy 
surrounding tissue, facilitate microthrombi and result in 
permanent damage to the pulmonary, cardiovascular and 
renal systems [21]. NETs can exert direct cytotoxic effects on 
lung epithelium and endothelium and excessive production 
of NETs has been found in patients with ALI and pneumonia. 
Thus, NET formation can exert positive as well as negative 
inϐluences on multiple lung pathologies [80,81].  

In patients with diabetes mellitus, hyperglycemia induces 
or boosts NET formation and this may cause direct damage 
to endothelial cells and may predispose to complications 
such as diabetic retinopathy and diabetic wounds [10,78]. In 
patients with severe inϐluenza A virus infection, high levels of 
NETs contribute to lung injury, correlate with disease severity 
and imply poor prognosis [82]. In a model of inϐluenza A 
virus (H1N1) infection, excessive neutrophils and NETs might 
lead to: ALI, ARDS, and pneumonitis with alveolar-capillary 
damage [83]. Nicotine has been found to induce NETs which 
may contribute to smoking-related lung diseases [84]. 

NETosis

NETosis, a recently described neutrophil function, leads 
to the release of NETs in response to various stimuli and it 
represents the most dramatic stage in the process of cell 
death [11,14]. During NETosis, PMNLs undergo speciϐic 
morphological changes that include: chromatin condensation 
leading to loss of the lobulated nucleus, disintegration 
of intracellular membranes that allows chromatin and 
extracellular protein to mix, and the release of chromatin 
ϐilaments decorated with PMNL proteins derived from several 
cell compartments into the extracellular medium [14].

In NETosis, the following enzymes, chemicals, and 
signaling pathways are involved: (1) neutrophil elastase, 
(2) myeloperoxidase, (3) PAD-4, (4) PMA, (5) nicotinamide 
adenine dinucleotide phosphate (NADPH) which generates 
ROS, (6) mitogen activated protein kinase/extracellular 
signal-regulated kinase (MAPK/ERK) pathway, (7) Toll-
like receptors (TLRs), and (8) autophagy pathway. Also, 

the following steps or changes take place during NETOSIS: 
activated neutrophils ϐlatten and lose lobes of their nuclei, 
chromatin becomes condensed, nuclear detachment of the 
inner and outer membranes, separation of granules, the 
nuclear envelope breaks into pieces, and the cells roundup 
until the cell membrane ruptures and ejects the inner contents 
into the extracellular space forming NETs [15,17,18,74].

There are 2 types of NETosis [17,74]. The ϐirst type is 
suicidal NETosis which is slow, takes hours, and is induced 
by chemical stimuli such as PMA. In this type of NETosis, the 
following take place: occurrence of morphological changes 
in activated neutrophils, the release of NETs results in 
neutrophil death through a different pathway than apoptosis 
or necrosis, and the intracellular NET formation is followed 
by rupture of plasma membrane releasing the contents into 
the extracellular space thus forming NETs. The second type 
is vital NETosis which is rapid, takes minutes, and is induced 
by bacteria and other pathogens. In this type of NETosis: 
stimulated neutrophils remain active and functional following 
NET formation, the process results in blebbing of the nucleus 
to produce a DNA-ϐilled vesicle that is exocytosed thus leaving 
the plasma membrane intact, and neutrophils can continue to 
phagocytose and kill microbes after NETosis [17,74]. 

Neutrophils, NETs and NETosis in COVID-19

The pathological consequences of SARS-CoV 
infection in the lung include: (1) the virus applies several 
mechanisms to overcome the immune response including: 
inhibition of the rapid expression on type 1 interferon (IFN-
1), intervention with IFN-signaling through inhibition of 
STAT 1 phosphorylation, and immune exhaustion through 
exaggerated and prolonged IFN-1 production by plasmacytoid 
DCs; and (2) inϐlux of activated neutrophils and inϐlammatory 
monocytes/macrophages resulting in ARDS and cytokine 
storm thus weakening the immune system through IFN-1 
mediated T-cell apoptosis. SARS-CoV2 causing COVID-19 is 
expected to have the same or at least similar consequences on 
the immune system as SARS-CoV due to similarities between 
the 2 coronaviruses [85]. So, it is possible that: (1) excessive 
recruitment of various immune cells such as neutrophils, 
macrophages, monocytes, DCs, and T-lymphocytes; (2) NETs; 
and (3) NETosis may be responsible for many of the serious 
complications of COVID-19 such as: ARDS, cytokine storm, 
thromboembolic complications, acute organ dysfunction, 
and multiorgan failure [44,85,86]. In patients with COVID-19, 
high levels of NETs have been documented and it has been 
found that NETs may contribute to: cytokine release, ARDS, 
respiratory failure, as well as disseminated inϐlammation and 
microvascular thrombosis [87]. 

Possible therapies and therapeutic targets for COVID-19

Targeting upregulation or downregulation of NETs 
with destruction or protection of already formed NETs may 
become a valuable therapeutic intervention in patients 
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having severe pneumonia or ARDS [80,88]. As circulating 
NETs may be directly responsible for orchestrating ALI 
and ARDS, inhibition of NETosis may become valuable in 
reducing inϐlammation and organ damage [68]. In patients 
with respiratory syncytial virus infection, neutrophils could 
limit viral replication and spread by stimulating antiviral 
adaptive and immune responses [89]. Immune mediators 
such as: (1) GTS-21; the selective α7Ach receptor agonist that 
has the same inϐlammatory modulation effects as nicotine but 
without the risk of addiction and other side effects; and (2) 
platelet-derived acting factor-acetylhydroxylase  (RAF-AH) 
may become widely available for the treatment of cytokine 
storm associated with viral pneumonia [40]. 

Prostaglandin-E2 has been found to inhibit NET formation 
[90]. Probiotic Lactobacillus rhamnosus strain BB has potent 
antioxidant activity and can reduce the phagocytic function of 
neutrophil and inhibit NET formation [62]. The combination 
of zinc and pyrithione has been found to inhibit the replication 
of SARS-CoV (SARS coronavirus) [91]. In patients with 
COVID-19, the ability to form NETs may contribute to organ 
damage and increased mortality. Hence, targeting NETs 
directly or indirectly with the existing drugs may reduce the 
clinical severity of COVID-19 infection [21]. Also, treatments 
that inhibit viral replication or target regulation of the 
dysfunctional immune reactions may offer synergistic effects 
in order to block viral pathologies at multiple levels [6].

Conclusion and future directions
Many of the complications of COVID-19 such as: respiratory 

distress and failure; multiorgan dysfunction including cardiac 
decompensation; thromboembolic phenomena, the associated 
cytokine storm as well as the poor outcome encountered in 
cigarette smokers and in patients with diabetes mellitus can 
well be explained by the dysfunctional neutrophils and their 
products. Apparently the functions of neutrophils, NETs, and 
NETosis are not well characterized in COVID-19 due to the 
relative lack of studies on this aspect of the disease. As depicted 
from other viral infections that involve the lungs and cause 
serious complications, the roles of neutrophils, NETs, and 
NETosis seem to be paradoxical under certain circumstances. 
Therefore, further studies are needed in this ϐield. These 
studies should focus not only on the numbers of neutrophils 
but also on their functions, subsets, life span of each subset, as 
well as migration to tissues and organs affected by infection, 
inϐlammation and other injuries. Such studies are likely to 
help in developing more efϐicacious therapeutic interventions 
that can bring cure to this devastating, widely spreading and 
life-threatening viral illness.
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