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Abstract 

Mesenchymal stem cells are heterogenous adult multipotent stromal cells that can be isolated 
from various sources including bone marrow, peripheral blood, umbilical cord blood, dental pulp, 
and adipose tissue. They have certain regenerative, anti-infl ammatory, immunomodulatory, 
immunosuppressive, antimicrobial, and other properties that enable them to have several 
therapeutic and clinical applications including treatment of various autoimmune disorders; role in 
hematopoietic stem cell transplantation and regenerative medicine; treatment of skin, pulmonary 
and cardiovascular disorders; treatment of neurological and eye diseases; as well as treatment 
of various infections and their complications. 

Diff erent factors including donor age, biological source, route of administration, and 
signaling pathways have an impact on the functions and consequently the clinical applications 
of mesenchymal stromal cells. The products of mesenchymal stem cells such as extracellular 
vesicles and exosomes reproduce the biological eff ects and most of the therapeutic actions of 
the parent stem cells. Genetic engineering and the use of specifi c mesenchymal stromal cell 
products have improved their clinical effi  cacy and decreased their adverse eff ects. However, 
despite the recent progress in the use of mesenchymal stem cells, the clinical application of these 
cells in the treatment of several diseases still faces real challenges that need to be resolved. The 
current status of mesenchymal stem cells and the controversies related to their clinical utilization 
in various disease conditions will be thoroughly discussed in this review.

MSC must be plastic-adherent when maintained in standard 
culture conditions; (2) MSC must express CD105, CD73 
and CD90, and lack the expression of CD45, CD34, CD14 or 
CD11b, CD79a or CD19 and HLA-DR surface molecules; and 

Introduction
Mesenchymal Stem Cells (MSCs) are heterogeneous, non-

hematopoietic, adult multipotent stromal progenitor cells 
that are capable of self-renewal and differentiation into 
multiple lineages and various cell types [1-9]. Adult MSCs 
were ϐirst isolated from Bone Marrow (BM) by Alexander 
Friedenstein and his colleagues in the year 1976 [2,10,11]. 
Subsequently, MSCs have been isolated from several adult 
as well as neonatal sources such as Adipose Tissue (AT), 
peripheral blood, Umbilical Cord (UC), placenta, amniotic 
ϐluid, breast milk, skin, and skeletal muscles (Table 1) [2,11-
24]. MSCs have the following distinguishing features: (1) the 
ability to adhere to the plastic vessel under optimal culture 
conditions; (2) the capability to differentiate into osteoblasts, 
adipocytes, and chondrocytes; and (3) having a characteristic 
immunophenotypic proϐile on ϐlowcytometry (Table 2) 
[2,21,25-32]. In the year 2006, the Mesenchymal and Tissue 
Stem Cell Committee of the International Society for Cellular 
Therapy (ISCT) issued a position statement that proposed the 
following minimal criteria for deϐining multipotent MSCs: (1) 
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Table 1: Sources of mesenchymal stem cells.
1. Bone marrow. 
2. Peripheral blood. 
3. Umbilical cord blood and Wharton's jelly of the umbilical cord. 
4. Chorionic villi and chorionic membrane of the placenta. 
5. Human amniotic fl uid and decidua of the uterus. 
6. Menstrual blood.
7. Fallopian tubes and cervical tissues. 
8. Breast milk. 
9. Adipose tissues: body fat. 
10. Dental pulp, periodontal ligaments, exfoliated deciduous teeth.
11. Oral mucosa, palatal tonsils and salivary glands. 
12. Skeletal muscle, muscle tendons and dermal tissues. 
13. Lung tissues and alveolar epithelium. 
14. Adult human liver tissues and fetal liver. 
15. Synovial membrane and synovial fl uid.
16. Parathyroid glands.

https://crossmark.crossref.org/dialog/?doi=10.29328/journal.jsctt.1001034&domain=pdf&date_stamp=2023-12-21
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(3) MSC must differentiate to osteoblasts, adipocytes and 
chondroblasts in vitro [8,31,33]. However, certain types of 
MSCs can occasionally show positivity or negativity for speciϐic 
surface markers as illustrated in Table 2 [1-3,5,6,8,31,34-
38]. Several studies have shown that MSCs can differentiate 
into other cell types such as cardiomyocytes, myocytes, and 
neurons, and that MSCs derived from BM, AT, and other 
sources do express CD 34 surface markers under certain 
circumstances [5,9,39-42]. Additionally, MSCs can be seen 
in abundant numbers in the circulation under the following 
conditions: stem cell mobilization with growth factors, stroke, 
hypoxia, tissue injuries, as well as inϐlammatory conditions 
[9,43-48]. Unfortunately, little is known about the molecular 
basis underlying the stemness of MSCs and it is still unclear 
whether the recently discovered transcriptional factors and 
genes regulate stemness or only differentiation of MSCs [7]. 
In the year 2019, the International Society for Cell & Gene 
Therapy (ISCT®) Mesenchymal Stromal Cell (ISCT-MSC) 
committee issued a position statement to continue supporting 
the acronym MSCs but it recommended that the acronym 
MSCs must be: (1) supplemented by the tissue-source origin 
of the cells, which would highlight tissue-speciϐic properties; 
(2) intended as MSCs unless rigorous evidence for stemness 
exists that can be supported by both in vitro and in vivo data; 
and (3) associated with robust matrix of functional assays 
to demonstrate MSC properties, which are not generically 
deϐined but informed by the intended therapeutic mode of 
actions [32]. 

Factors aff ecting the functions and clinical applications 
of mesenchymal stem cells

Human MSCs are multipotent stem cells capable of self-
renewal and differentiation in vitro into cells of different 

lineages [33,49,50]. They interact with immune cells 
both in innate and adaptive immune systems so as to: (1) 
enable immunosuppression and tolerance induction, and 
(2) modulate the immune responses [51]. MSCs possess 
immunomodulatory functions that enable them to be 
investigated as potential treatments for various immune 
disorders [35,50]. 

The past decade has seen an explosion of research directed 
toward a better understanding of the mechanisms of MSC 
function during the rescue and repair of injured tissue and 
organs. An improved understanding of MSC function holds 
great promise for the application of cell therapy and also 
for the development of powerful cell-derived therapeutics 
in regenerative medicine. However, the ϐield has made 
particular progress in (1) delineating cell-cell signaling and 
molecular controls for MSC differentiation, and (2) deϐining 
several other mechanisms through which administered MSCs 
can promote tissue repair [52]. Properties and functions of 
MSCs that are essential in their clinical therapeutic effects 
include (1) self-renewal and high proliferation capacity, (2) 
multipotency, (3) secretory and trophic ability, (4) migration 
and homing properties with tropism towards inϐlamed and 
injured tissues, (5) immunosuppressive functions, (6) potent 
immunoregulatory and immunomodulatory properties, (7) 
tissue remodeling and regeneration, (8) regulation of cellular 
hemostasis, and (9) easy access and isolation [53-56]. The 
mechanisms by which MSCs promote tissue repair include (1) 
strong paracrine activity that involves secretion of proteins, 
cytokines, chemokines, and hormones; (2) transfer of 
mitochondria by way of tunneling nanotubes or microvesicles; 
and (3) transfer of exosomes or microvesicles containing RNA 
and other molecules [52,57]. The high immunomodulatory 
capacity of MSCs is reϐlected by: (1) their migration to the 
sites of injury and inϐlammation, (2) their differentiation into 
various functional cells at the sites of injury and inϐlammation, 
(3) their boosting of immunity, (4) their tumor suppression 
effects, and (5) their anti-angiogenic effects [56]. MSCs are 
characterized by: (1) an extraordinary capacity to modulate the 
phenotype and functional properties of various immune cells 
that play an essential role in the pathogenesis of inϐlammatory 
disorders, and (2) immunosuppressive properties that have 
enabled MSCs to emerge as promising tools for the treatment 
of inϐlammatory disorders such as acute Graft-Versus-Host 
Disease (GVHD), graft rejection in patients undergoing organ/
cell transplantation, and Autoimmune Diseases (AIDs) [58].

Features of MSCs that favor their utilization in clinical 
practice include: (1) MSCs are immunologically tolerated in 
the recipient, (2) they do not show signs of cellular senescence, 
including compromised proliferation and differentiation 
capabilities, (3) compatibility with the biological sex of the 
recipient in regard to sex-speciϐic immune processes, and (4) 
they are known to be effective in attenuating hyperactivated 
cytokine and immune cell activities in the recipient from 
transplantation clinical studies [59]. 

Table 2: Surface Markers of Mesenchymal Stem Cells on Flowcytometry.
 Positive Negative 

Characteristic surface markers
CD 105
CD 73
CD 90

CD 45
CD 34
CD 14
CD 11b
CD 19
CD 79a
HLA-DR 

Other surface markers that 
may/may not be expressed

CD 117 
CD 166 
CD 29 
CD 44 

CD 106 
CD 9 
CD 10 
CD 13 
CD 28
CD 33 

CD 49b
CD 71

CD 164
CD 271

HLA-class I
Stro-1

SSEA-4
ITGA-11 

CD 3
CD 33 
CD 133 

MSCs: Mesenchymal Stem Cells; HLA: Human Leukocyte Antigen.
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compartments of CD4(+) and CD8(+) T cells, which may 
differentially impact their therapeutic effect in immune 
disorders. The inϐluence of MSCs on IL-9 expression can open 
new possibilities for MSC-based therapy in allergic diseases 
[68]. BM-MSCs displayed a striking inhibitory action over T 
cells from Rheumatoid Arthritis (RA) patients, reducing the 
expression of cytokines involved in RA physiopathology. 
Remarkably, BM-MSC-derived immunomodulation affected 
naive, effector, as well as memory T cells [69]. 

ECVs derived from BM-MSCs have similar therapeutic 
effects to BM-MSCs, including repairing damaged tissues, 
inhibiting macrophage polarization, and promoting 
angiogenesis. ECVs derived from BM-MSC, as efϐicient and 
feasible natural nanocarriers for drug delivery, have the 
advantages of low immunogenicity, no ethical controversy, 
good stability, and easy storage, thus providing a promising 
therapeutic strategy for many diseases. ECVs derived from 
BM-MSC have shown great potential in the treatment of 
bone metabolic diseases [70]. Exosomes derived from BM-
MSCs showed superior regeneration ability, and exosomes 
derived from AT-MSCs played a signiϐicant role in immune 
regulation, whereas exosomes derived from UC-MSCs were 
more prominent in tissue damage repair [71]. 

Adipose tissue-mesenchymal stem cells: MSCs have 
been isolated from various other less invasive sources that 
comprise alternatives to BM including AT. AT-MSCs can be 
more easily isolated and considerably larger amounts of MSCs 
can be obtained from fat or AT compared with the BM. AT-MSCs 
and BM-MSCs share many biological characteristics but have 
some differences in their immunophenotype, differentiation 
potential, transcriptome, proteome, and immunomodulatory 
activity [62,64-72]. Human AT-MSCs support hematopoiesis 
in vitro and in vivo and thus provide the rationale for their 
use in supporting hematopoietic reconstitution in clinical 
settings [73]. AT represents a promising alternative to BM as 
a source of MSC to maintain hematopoiesis, but UC matrix-
derived MSC demonstrated inferior hematopoietic supportive 
capacity compared to MSC from adult tissues [72]. AT-MSCs 
and BM-MSCs from the same donor have been found to 
display similar immunomodulatory capacities on both innate 
and acquired immunity cells. However, other variables such 
as the accessibility of samples or the frequency of MSCs in the 
tissue, should be considered to select the source of MSC for 
cell therapy [74]. 

BM-MSCs and AT-MSCs share a similar immunophenotype 
and capacity for in vitro multilineage differentiation. The 
immunomodulatory capacities of BM-MSCs and AT-MSCs are 
similar, but the differences in cytokine secretion cause AT-
MSCs to have more potent immunomodulatory effects than 
BM-MSCs indicating that AT-MSCs can be considered a good 
alternative to BM-MSCs for immunomodulatory therapy [75]. 
Transplantation of BM-MSCs and UC-MSCs can alleviate the 
symptoms of neuropathic pain and result in subsequent motor 

MSCs have been widely utilized for the treatment of diverse 
inϐlammatory diseases, due to their potent immunoregulatory 
functions. MSCs exert their therapeutic effects largely 
through their paracrine actions. Growth factors, cytokines, 
chemokines, extracellular matrix components, and metabolic 
products were all found to be functional molecules of MSCs 
in various therapeutic paradigms. These secretory factors 
contribute to immune modulation, tissue remodeling, and 
cellular homeostasis during regeneration. The paracrine 
actions of MSCs are powerful bioactive agents for treating 
various diseases, especially for refractory immune disorders 
and tissue damage [55]. Functions of MSCs are mediated by: (1) 
paracrine factors, (2) mitochondrial transfer, and (3) secretion 
of Extracellular Vesicles (ECVs) [56]. Ideally, autologous MSCs 
are the choice of safety as allogenic transplantation could lead 
to cell rejection, but cells obtained from patients suffering 
from AIDs may behave differently than those from healthy 
donors, including deϐiciency in the ability to proliferate and 
successfully differentiate. So, it is preferable to obtain MSCs 
from BMs of young healthy donors or from UCs directly after 
birth [59]. Recent studies suggest that factors including age, 
gender, and biological sources of MSCs can have a signiϐicant 
impact on therapy outcomes [54,56,59-61]. Hence, it is 
worthwhile to further establish MSC banks from multiple 
donors that span a range of biological ages, tissue sources, and 
genders for the selection of future transplantation therapies 
[59]. 

Impact of sources of mesenchymal stem cells on their 
clinical applications

Bone marrow-mesenchymal stem cells: As BM-derived 
MSCs were discovered ϐirst, they were initially considered 
the main source of MSCs for clinical application [62]. BM-
MSCs are capable of differentiation into various mesodermal 
lineages but the availability of conventional BM-MSCs is 
limited [63,64]. BM-MSCs constitute an essential component 
of the hematopoietic niche, responsible for stimulating and 
enhancing the proliferation of HSCs by secreting regulatory 
molecules and cytokines to regulate hematopoiesis in the 
BM microenvironment [63,65-67]. Osteogenesis of BM-MSCs 
plays a central role in hematopoiesis, while adipogenesis of 
BM-MSCs has a negative effect on hematopoietic recovery 
[66]. Recently, by lineage tracing and single-cell sequencing, 
several new subgroups of BM-MSCs and their roles in normal 
physiological and pathological conditions have been clariϐied. 
The key regulators and mechanisms controlling the fate of 
BM-MSCs are being revealed and cross-talk among subgroups 
of BM-MSCs has been demonstrated [67]. Many factors, 
including aging, obesity, irradiation, and chemotherapy, 
can lead to the differentiation bias of BM-MSCs and related 
hematopoietic disorders. Rescuing the dysregulation of BM-
MSC differentiation is crucial to bone hematopoietic recovery 
[66]. 

Human BM-MSCs differentially regulate the functional 
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recovery after spinal cord injury. However, the survival rate 
and electrophysiological ϐindings of UCMSCs are signiϐicantly 
better than BM-MSCs [76]. AT-MSCs are an attractive 
alternative to BM-MSCs for the treatment of severe Spinal 
Cord Injury (SCI) due to their enhanced stress resistance and 
secreted factor proϐile [77]. 

Wound healing is a complex process with a linear 
development that involves many actors in a multistep timeline 
commonly divided into four stages: hemostasis, inϐlammation, 
proliferation, and remodeling [78]. Studies on wound healing 
have shown that murine AT-MSCs and BM-MSCs have shown 
equivalent effects in enhancing diabetic wound healing. 
However, ECVs derived from BM-MSCs have been shown to 
promote proliferation, while ECVs derived from AT-MSCs 
exert major effects on angiogenesis [79,80]. Great interest 
is being focused on the paracrine activity of AT-MSCs for its 
potential therapeutic impact on chronic non-healing wounds 
[78]. The secretome from AT-MSCs and ϐibroblasts provides 
a safe and efϐicacious means for therapeutic development in 
contrast to the signiϐicant health problems that can result from 
using BM-MSCs and blood-derived MSCs and their secretome 
[81]. The secretome of AT-MSC represents a novel, promising 
alternative to cell-based therapy for wound repair as it has 
the following advantages over MSCs: (i) its feasible long-term 
storage, eliminating the need for toxic cryoprotectants, (ii) use 
of ϐilter sterilization as the principal components as opposed 
to cells that cannot be terminally sterilized, (iii) convenience 
to alter the secretome proϐile for speciϐic targeted applications, 
and (iv) cost-effective mass production overcoming the need 
for maintenance of huge clonal populations [82]. 

The main advantages of AT-MSCs over MSCs derived from 
other sources such as BM include: (1) the ease of methodology 
utilized in tissue collection, cell isolation using minimally 
invasive techniques with low morbidity compared to BM-
MSCs; (2) obtaining abundant cells during isolation from a 
speciϐic AT source; (3) ability to differentiate into various cell 
types of the tri-germ lineages, including osteocytes, adipocytes, 
neural cells, vascular endothelial cells, cardiomyocytes, 
pancreatic β-cells, and hepatocytes; (4) high self-renewal and 
proliferation capacity; (5) having anti-ϐibrotic, anti-apoptotic, 
anti-inϐlammation, and immunomodulatory properties; 
(6) having immunoregulatory and immunosuppressive 
properties with low immunogenicity; (7) ability to migrate to 
sites of inϐlamed and damaged tissues; (8) ability to act through 
autocrine and paracrine mechanisms including the secretion 
of broad spectrum of cytokines, growth factors, nucleic acids, 
and ECVs; and (9) ability of their secretome to: alter tissue 
biology, stimulate tissue resident stem cells, change immune 
cell activity, and mediate therapeutic outcome [83-86]. 

Umbilical cord-mesenchymal stem cells: Considered 
for a long time as a medical waste, UC appears these days 
as a promising source of MSCs. Several reports have shown 
that UC-derived MSCs are more primitive, proliferative, and 

immunosuppressive than their adult counterparts. Although 
UC-MSCs are until now not particularly used as an MSC source 
in clinical practice, accumulating evidence shows that they 
may have a therapeutic advantage in treating several diseases, 
especially autoimmune and neurodegenerative diseases [87]. 
MSCs derived from the Wharton’s Jelly (WJ) of UC can easily 
differentiate into a plethora of cell types leading to a variety of 
applications. WJ-MSCs are slightly easier to harvest compared 
with other MSCs such as BM-derived MSCs. The fascinating 
stemness properties and therapeutic potential of WJ-MSCs 
provide great promise in many aspects of regenerative 
medicine and should be considered for further investigations 
as safe and effective donor cells for transplantation therapy 
in many debilitating disorders [88]. MSCs derived from 
WJ-UC have recently gained considerable attention in the 
ϐield of regenerative medicine. The high proliferation rate, 
differentiation ability into various cell lineages, easy collection 
procedure, immuno-privileged status, and nontumorigenic 
properties along with minor ethical issues make WJ-MSCs 
an ideal approach for tissue repair. The number of WJ-MSCs 
in the UC samples is high as compared to other sources. 
WJ-MSCs have rapidly advanced into clinical trials for the 
treatment of a wide range of disorders [89]. Compared to 
other sources of MSCs including BM, placenta, and AT, MSCs 
derived from WJ-UC have the strongest immunomodulatory 
and immunosuppressive potential. So, WJ-MSCs are the most 
attractive cell population for use in immune cellular therapy 
when immunosuppressive action is required [90]. MSC from 
fetal sources can undergo more cell divisions before they 
reach senescence than MSC from adult tissue such as BM or 
AT [15]. 

The advantages of UC-MSCs include (1) a painless 
collection procedure, (2) fast and high self-renewal 
potential, (3) multilineage differentiation potential with 
ability to differentiate into the 3 germ layers, (4) having low 
immunogenicity, (5) secretion of effective molecules that 
regulate apoptosis, ϐibrosis, and neovascularization, (6) ability 
to modulate immune responses, (7) ability to accumulate 
in damaged tissues or inϐlamed sites, (8) ability to promote 
tissue repair, (9) ability to improve engraftment and suppress 
the immune system after HSCT, and (10) inhibition of tumor 
cell proliferation and migration to nest of cancer [91-93]. 

Products of mesenchymal stem cells

Extracellular vesicles of mesenchymal stem cells: 
MSC-ECVs are submicron circular lipid membrane vesicles 
that may be released from all human cells [94,95]. They were 
described as platelet dust in the year 1967 [96]. MSC-ECVs 
are involved in many cellular processes, both in physiological 
and pathological conditions [95,97]. They are mediators of 
cell-cell communication and they are active players in cell 
differentiation, tissue homeostasis, and organ remodeling 
[95,98,99]. ECVs carry or transfer biologically active molecules 
such as proteins, nucleic acids (mRNA/miRNA), and bioactive 
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lipids from stem cells to injured or diseased cells [97,98]. 
The efϐiciency of ECVs of MSCs can be further enhanced by: 
(1) selecting the appropriate ECV-producing cells and cell 
phenotypes, (2) optimizing the conditions in which the donor 
MSCs are cultured, and (3) engineering the ECVs produced 
to transport therapeutic and targeting molecules [96,100]. 
ECVs are fundamental paracrine effectors of MSCs that can 
overcome most of the limitations of MSC applications and 
they have allowed major advances in preclinical and clinical 
studies [96,99]. ECVs of MSCs maintain the stemness of the 
parent MSCs and retain their functions including modulation 
of the immune system, regulation of inϐlammation, inhibition 
of apoptosis, and induction of tissue regeneration [94,96,99]. 

ECVs of MSCs have several advantages that include: (1) 
ability to reproduce the biological effects and most of the 
therapeutic actions obtained by using the patent MSCs; (2) 
stability for long periods of time; (3) easy isolation; (4) lower 
immunogenicity than MSCs; (5) higher safety proϐile and 
less adverse effects than MSCs; (6) their heterogeneity is 
dependent on the stromas of origin; (7) ability to alleviate cell 
aging; (8) regulation of immune responses and inϐlammation, 
that is, they play critical role in immunomodulation; (9) their 
therapeutic effects can be improved further by bioengineering 
to induce more precise targeting and transfer of drugs; 
(10) great contribution to homeostasis and intercellular 
communication through transportation of a wide variety 
of biomolecules including nucleic acids, signalling lipids, 
regulatory proteins, transcription factors, cytokines and 
growth factors to recipient cells; (11) alleviation of sepsis 
and protection against sepsis-induced organ dysfunction; and 
(12) having antitumor effects, thus they can be used as cell-
free cancer therapy [101-110]. 

Despite the progress achieved in introducing ECVs of 
MSCs in clinical therapeutics, the use of ECVs has several 
disadvantages and challenges that limit their clinical 
applications and these include: (1) inconsistent manufacturing 
processes including scalability and isolation; (2) stability, 
biodistribution, and pharmacokinetics; (4) quantiϐication and 
characterization; (5) transfer and speciϐic tissue targeting; 
(6) safety concerns; (7) poor cell survival; (8) efϐicient and 
optimal cell dosing; (9) storage and handling of clinical grade 
ECVs; (10) immune rejection; (11) high costs; and (12) lack 
of quality control and validation assays and measurements 
[103,108,109,111-116]. 

Exosomes of mesenchymal stem cells: Exosomes are 
ECVs secreted by various cells and they are mainly composed 
of lipid bilayers without organelles [117]. Compared to MSCs 
themselves, MSC-derived exosomes have provided signiϐicant 
advantages by efϐiciently decreasing unfavorable adverse 
effects, such as infusion-related toxicities [118]. The exosomes 
secreted by MSCs have been broadly researched due to their 
elastic, immune, and tumor-homing properties [117]. 

MSCs are recognized to generate a wide range of exosomes 
in a clinically appropriate measure as compared to other cell 
origins. Exosomes of MSCs have been widely investigated 
because of their immune attributes, tumor-homing attributes, 
and ϐlexible characteristics. The therapeutic efϐiciency of 
exosomes and their safety for transferring different cellular 
biological components to the recipient cell have attracted 
signiϐicant attention for their capability as miRNA carriers 
[119]. MSC-exosomes are becoming a promising cell-free 
therapeutic tool and an increasing number of clinical studies 
started to assess the therapeutic effect of exosomes of MSC in 
different diseases [118]. Targeted drug delivery in the body 
is a promising method for treating many refractory diseases 
such as tumors and Alzheimer’s disease [117]. Accumulating 
literature shows that exosomes have great potential in the 
treatment of SCIs [120]. While exosomes of MSC have apparent 
advantages, some unresolved problems also exist [117]. 

Impact of signaling pathways on the functions of 
mesenchymal stem cells

Signaling pathways, transcription factors, and growth 
factors modulate the differentiation of MSCs into different cell 
lineages [121]. Successful MSC therapy, along with the homing, 
relies on the secretion of biologically active molecules including 
cytokines, growth factors, and chemokines known as the 
secretome of MSCs [122]. A critical problem for MSCs in tissue 
engineering is their low survival ability and functionality as 
most MSCs become apoptotic after transplantation. Increasing 
MSC survival ability and functionalities is the key to potential 
applications of MSCs. Hence, several approaches have been 
studied to increase MSC tissue forming capacity including 
application of growth factors, overexpression of stem cell 
regulatory genes, and improvement of biomaterials for 
scaffolds [123]. The effects of these approaches on MSCs have 
been associated with the activation of one of the intracellular 
signaling pathways; the phosphoinositide 3-kinase (PI3K)/
Akt signaling pathway; which plays central regulatory roles 
in MSC survival, proliferation, differentiation, migration, 
angiogenesis, cytokine production, and apoptosis [122,123]. 

MSCs express and secrete a broad spectrum of bioactive 
molecules, including Notch and Wnt molecules, that support 
all the phases of the hematopoiesis, including self-renewal, 
proliferation, and differentiation [124]. The peroxisome 
proliferator-activated receptor-γ (PPAR-γ) signaling pathway 
regulates the differentiation of MSCs into adipocytes, while 
the Wnt signaling pathway regulates the differentiation of 
MSCs into osteoblasts, that is, Wnt is the master moderator 
of osteogenesis [125]. However, the key signaling pathways 
that are involved in MSC differentiation and growth include: 
(1) activin-mediated transforming growth factor (TGF)-
beta signaling, (2) Platelet-Derived Growth Factor (PDGF) 
signaling, and (3) Fibroblast Growth Factor (FGF) signaling 
[126]. 
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Current and potential clinical applications of 
mesenchymal stem cells

The proliferative, immunomodulatory, anti-inϐlammatory, 
regenerative, and other properties of MSCs make them 
ideal candidates for use as therapeutic agents in several 
autoimmune, systemic inϐlammatory, and infectious diseases 
in addition to the ϐields of regenerative medicine and tissue 
engineering. Consequently, their potential clinical applications 
have expanded rapidly over the years as shown in Table 3 
[2,6,15,21,24,49,60,127-140]. 

Examples of the therapeutic applications of MSCs are 
discussed below. 

Use of mesenchymal stem cells in autoimmune 
diseases: AIDs are associated with an abnormal immune 
system, chronic inϐlammation, and immune reaction against 
self-antigens leading to injury and failure of several tissues 
and organs [141]. Even with the advancements in developing 
novel therapies and biological agents, AIDs are still incurable 
[142]. 

MSCs can migrate to the sites of inϐlammation and exert 
potent immunosuppressive and anti-inϐlammatory effects 
through the interaction between lymphocytes associated with 
both the innate and adaptive immune systems [6]. Recently, 
MSCs have been used in clinical trials to treat various AIDs 
because of their beneϐicial properties such as safety and 
ease of isolation, high proliferation ability, multipotent 
differentiation capacity, as well as their anti-inϐlammatory, 
immunomodulatory, and regenerative properties [141]. After 
widespread in-vitro and in-vivo preclinical studies, autologous 
and allogeneic MSCs and their ECVs have been applied in 
the treatment of several AIDs including type 1 Diabetes 
Mellitus (DM); GVHD; Multiple Sclerosis (MS); Systemic 
Lupus Erythematosus (SLE); RA; systemic sclerosis; Sjogren’s 
syndrome; and Inϐlammatory Bowel Diseases (IBDs) such as 
Crohn’s disease [142-144]. Studies on the use of MSCs in AIDs 
have shown no remarkable association with the evolution 
of malignancies or infectious diseases [141]. Additionally, 
genetic modiϐication of MSCs to express anti-tumor genes has 
provided a rationale for their utilization as anticancer therapy 
[6]. 

The results of 6 systematic reviews and meta-analyses 
on the use of MSCs in several AIDs showed the following 
ϐindings: in patients with DM, 2 systematic reviews and meta-
analyses that included 36 Randomized Clinical Trials (RCTs) 
comprising 900 patients showed that treatment with MSCs ± 
hematopoietic stem cells (HSCs) resulted in: transient insulin 
independence or decrease in daily insulin requirements, 
signiϐicant decrease in Hb A1C level, and improvement in 
C-peptide levels, and that administration of MSCs was shown 
to be generally safe with the exception of some hypoglycemic 
episodes [145,146]; (2) in patients with RA, 1 systematic 
review and metaanalysis showed that administration of MSCs 
resulted in clinical effectiveness in 54% of treated patients 
as the following results were reported: decrease in disease 
activity, improvement in symptoms, and improvement 
in laboratory indices [147]; (3) in patients with SLE, the 
results of 2 systematic reviews and meta-analyses showed 
that MSC administration resulted in: reduction in the rate of 
ϐlare-ups, reduction in urinary protein levels, and increase 
in serum C3 complement levels, while some of the RCTs 
included reported adverse effects such as fever, headache, and 
diarrhea during MSC infusion [147,148]; (4) in patients with 
systemic sclerosis, 1 systematic review and meta-analysis that 

Table 3: Current and potential therapeutic indications of mesenchymal stem cells. 
1. Hematopoietic stem cell transplantation: 

a. Enhancement of engraftment. 
b. Prevention of graft versus host disease (GVHD). 
c. Treatment of acute and chronic GVHD. 

2. Solid organ transplantation (SOT): Improvement of outcome of SOT by: 
a. Immunomodulation.
b. Induction of transplantation tolerance.

3. Treatment of autoimmune diseases: 
a. Systemic lupus erythromatosus. 
b. Rheumatoid arthritis.
c. Systemic sclerosis.
d. Ankylosing spondylitis.
e. Multiple sclerosis.
f. Type 1 diabetes mellitus.
g. Ulcerative colitis.
h. Crohn's disease.
i. Type II refractory celiac disease.
j. Other autoimmune disorders: myasthenia gravis, uveitis, neuromyelitis 

optica and hearing loss. 
4. Regenerative medicine and tissue repair: 

a. Myocardial ischemia. 
b. Acute myocardial infarction .
c. Cardiac dysfunction.
d. Dilated cardiomyopathy. 
e. Chronic non-healing wounds.
f. Critical limb ischemia 
g. Peripheral vascular disease. 
h. Ischemic stroke. 
i. Traumatic brain injury. 
j. Spinal cord injuries. 
k. Liver injury.
l. Radiation-induced lung fi brosis. 
m. Tissue repair: bone, cartilage, muscle, skin, myocardium, trachea, etc. 

5. Treatment of various infections and their complications: 
a. Bacterial infections including sepsis and its associated adult respiratory 

distress syndrome. 
b. Viral infections such as human immunodefi ciency virus, hepatitis B and C 

viruses, and COVID-19 infections. 
c. Parasitic infections such as Chagas disease, schistosomiasis, and malaria.
d. Mycobacterial infections such as tuberculosis. 

6. Other indications: 
a. Macular degeneration, corneal regeneration or reconstruction and corneal 

transplantation. 
b. Liver fi brosis, liver cirrhosis, end-stage liver disease and hepatic failure. 
c. Bones and joints: osteogenesis imperfecta, osteoarthritis, osteoporosis, 

osteonecrosis, meniscus injury. 
d. Cancer gene therapy and anti-cancer cellular therapy such as breast and 

lung cancers. 
e. Aging frailty.
f. Amyotrophic lateral sclerosis. 
g. Parkinson’s Disease. 
h. Idiopathic pulmonary fi brosis. 
i. Chronic obstructive airway disease. 
j. Renal disorders. 
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included 9 studies comprising 133 patients showed that the 
use of MSC therapy resulted in improvement in: lung function, 
skin thickening, mouth opening, digital ulcerations, and pain 
in the absence of severe adverse effects [149]; (5) in patients 
with ankylosing spondylitis, MSC administration resulted in 
improvement in activity, reduction in pain, and reduction in 
disease indices such as erythrocyte sedimentation rate and 
tumor necrosis factor-α (147); (6) in patients with IBD, the 
use of MSCs resulted in improvement in clinical conditions 
of the treated patients [147]; and (7) in patients with MS, 2 
systematic reviews and meta-analyses showed that the use of 
MSCs showed equivocal results [147,150]. 

Use of mesenchymal stem cells in hematopoietic 
stem cell transplantation: BM-derived MSCs play a crucial 
role in the regulation of hematopoiesis [151]. In addition to 
supporting hematopoiesis, MSCs are capable of modulating 
immune and inϐlammatory responses and participating in 
tissue repair [152,153]. Also, once ECVs of MSCs are given 
in combination with HSCs, they can modulate the immune 
system and inhibit the development of GVHD following HSCT 
[151,152]. 

The clinical applications of MSCs in HSCT include (1) 
prevention and treatment of GVHD, (2) enhancement of 
hematopoietic engraftment and prevention of engraftment 
failure, (3) acceleration of lymphocyte recovery, (4) repair of 
tissue damage, and (5) reduction in aplasia post-chemotherapy 
[152-156]. The safety and therapeutic potential of the clinical 
application of MSCs in HSCT have been well established 
by numerous clinical trials. Commercial MSC products for 
pediatric steroid-refractory GVHD have already been licensed 
in Japan, conditionally licensed in Canada and New Zealand, 
and may get approval by the Food and Drug Administration 
(FDA) in the United States of America (USA) soon [155]. 

Three systematic reviews and meta-analyses, that included 
85 studies comprising 2334 patients, on the use of MSCs 
in prevention of GVHD, treatment of both acute including 
steroid-refractory and chronic GVHD showed the following 
results: (1) in patients with acute GVHD, 39% - 67% of patients 
achieved Complete Response (CR) and one-third of patients 
achieved partial response (PR); (2) in patients with chronic 
GVHD, 23% of patients achieved CR while 66% of patients 
achieved PR; (3) acute GVHD grade II responded to MSCs much 
better than grades III and IV acute GVHD; (4) acute GVHD of 
the skin responded to MSC therapy better than acute GVHD 
of the liver or gastrointestinal tract; (5) children with acute 
GVHD showed better responses than adults with acute GVHD; 
(6) response to MSC therapy correlated well with the dose of 
MSCs administered; and (7) once used prophylactically, MSC 
treatment was effective in reducing the incidence of chronic 
GVHD and the overall survival (OS) was increased by 17% 
[157-159]. However, prophylactic co-transplantation of MSCs 
in addition to HSCs in patients with severe aplastic anemia 
undergoing haploidentical HSCT failed to show efϐicacy [160]. 

Additionally, one major review that included 9 studies on 
the use of MSCs in the treatment of steroid-refractory acute 
GVHD showed: (1) CR of steroid-refractory acute GVHD was 
achieved in up to 50% - 83% of patients; (2) CR, but not PR, 
was associated with prolonged OS; and (3) no serious adverse 
effects of MSC therapy were reported [161]. 

Use of mesenchymal stem cell therapies in lung 
diseases: Systematically infused MSCs have been found 
to migrate directly to the lung where they can: ameliorate 
cytokine release, protect alveolar epithelial cells, aid in 
alveolar ϐluid clearance, promote epithelial and endothelial 
recovery, repair injured airways, reduce the risk of allograft 
rejection, resist pulmonary ϐibrosis, and improve lung function 
by secreting many factors and modulating multiple biological 
processes involved in the immune response. Hence, MSCs 
have shown great potential and beneϐit in treating severe 
incurable pulmonary disorders [162]. Clinical trials on the use 
of autologous or allogeneic MSCs to treat various respiratory 
conditions have shown adequate evidence of safety as well as 
evidence of signiϐicant improvement in the quality of life of 
patients [163,164]. 

MSCs and their secretome have been used in the 
treatment of various respiratory diseases including viral and 
community-acquired pneumonia; emphysema, bronchial 
asthma, chronic obstructive airway disease; bronchiolitis 
obliterans; chronic idiopathic pulmonary ϐibrosis; acute 
lung injury and Acute Respiratory Distress Syndrome 
(ARDS); pulmonary ϐibrosis due to bleomycin or radiation; 
cystic ϐibrosis; and pulmonary hypertension [162-168]. 
Due to their potent and broad-spectrum properties and 
activities including immunomodulation, inhibition of 
bacterial growth and enhancement of bacterial clearance, 
anti-inϐlammatory; tissue-regenerative, pro-angiogenic, and 
anti-ϐibrotic properties which rely on cell-to-cell contact 
and paracrine mechanisms, MSCs offer novel and promising 
therapeutic options for several acute and chronic lung 
disorders [162,163,166,167,169]. However, the use of MSCs 
in the treatment of radiation-induced lung injury has shown 
beneϐicial as well as adverse effects such as enhancement of 
the progression of lung injuries [168]. 

Use of mesenchymal stem cells in the treatment 
of cardiovascular disorders: The therapeutic effects 
of MSCs in the treatment of cardiovascular diseases are 
based on the following: (1) their antiϐibrotic and anti-
inϐlammatory actions in reducing cardiac ϐibrosis and 
inϐlammation; (2) their migration into the sites of infarcted 
cardiac tissues; (3) neovascularization or their promotion 
of new blood vessel formation; (4) their differentiation into 
cardiomyocyte-like cells; (5) their contribution to the repair 
of infarcted myocardium; and (6) their other distinguished 
properties such as the wide range of sources, the easy 
isolation and ampliϐication, the low immunogenicity, their 
immunomodulatory effects, and the ability of MSCs to exert 
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effects through their paracrine activities [170-173]. The 
following cardiac conditions can beneϐit from MSC therapy: 
ischemic heart disease and Acute Myocardial Infection (AMI); 
heart failure; and cardiac ϐibrosis [170-177]. 

The results of 4 systematic reviews and meta-analyses, 
which included 53 RCTs comprising 3043 patients, on the use 
of MSCs in the treatment of various cardiac disorders have 
shown: (1) safety and efϐicacy of MSCs in the treatment of AMI 
and heart failure with no signiϐicant increase in mortality; (2) 
signiϐicant improvement in overall left ventricular ejection 
fraction by 3.2% to 5.7%; (3) improvement in prognosis and 
exercise capacity; and (4) signiϐicant reduction (47%) in the 
incidence of hospitalization. However, the factors that favored 
better responses included: allogeneic sources of MSCs; 
intracoronary injections; and MSC doses of 1 x 108 - 10 x 108 

cells [174-177]. 

Use of mesenchymal stem cells in the treatment of 
neurological and eye diseases: MSCs have proliferative, 
immunomodulatory, neuroprotective, and regenerative 
properties that make them promising cell-therapy candidates 
for various neurological disorders [178]. MSCs have been 
widely studied as cellular therapies for several neurological 
disorders in animal studies and early clinical trials and their use 
has shown safety, tolerability, and functional improvement, in 
addition to delay in disease progression after transplantation 
[178,179]. Genetic engineering and modiϐication of MSCs as 
well as the use of ECVs of MSCs have emerged as new tools to 
enhance the therapeutic efϐicacy of MSCs in treating various 
neurological diseases [178]. Several studies have shown that 
MSCs and their exosomes can differentiate into dopaminergic 
neurons thus they can replace the neuronal loss in 
neurodegenerative diseases such as Parkinson’s disease (PD) 
[180-183]. In a PD model, exosomes of human UC-MSCs have 
been shown to traverse the blood-brain barrier indicating 
their potential to treat patients with PD [184]. 

The immunoregulatory, anti-inϐlammatory, anti-apoptotic, 
and regenerative properties of MSCs in addition to their 
safety proϐile make them ideal cell therapy candidates to treat 
various eye diseases such as diabetic retinopathy, glaucoma, 
retinal degeneration, and retinitis pigmentosa [185-187]. The 
use of ECVs of MSCs and genetic manipulation of MSCs can 
further improve their ability to treat various eye disorders 
[186-188]. 

Use of mesenchymal stem cells in the treatment 
of various infectious diseases: MSCs are applied in the 
treatment of various infectious diseases due to: (1) having 
immunomodulatory effects, that is, modulation of host innate 
and adaptive immune cells; (2) having anti-inϐlammatory 
properties; (3) having antimicrobial effects against the major 
classes of human pathogens [bacteria, viruses, fungi, and 
parasites]; and (4) their ability to promote the restoration of 
the epithelium and to stimulate tissue regeneration [189,190]. 

MSCs are being investigated in more than 80 clinical trials 
for difϐicult-to-treat infectious diseases including sepsis, 
intra-abdominal and cutaneous infections, as well as viral 
infections. The completed clinical trials have reported not 
only safety but also promising efϐicacy against some infectious 
diseases [190]. Cell-free treatments such as ECVs of MSCs have 
demonstrated high therapeutic efϐicacy in preclinical studies. 
Hence, they can become a promising tool for the treatment 
of various infectious diseases particularly in combination 
with antimicrobial drugs [189]. MSCs have shown promising 
potential to inhibit bacterial infections. Therefore, MSCs can 
be considered a novel strategy to enhance antibiotic activity 
against Multidrug-Resistant (MDR) organisms [191]. 

Sepsis and septic shock are serious and life-threatening 
disorders that are associated with high rates of morbidity 
and mortality [192,193]. Due to the failure of conventional 
therapies in recent years, research is focusing on 
innovative treatments such as cellular therapies [192]. The 
immunomodulatory, anti-inϐlammatory, anti-apoptotic, 
regenerative, and antimicrobial properties of MSCs can 
protect against organ failure caused by sepsis and septic 
shock. Hence, MSCs have been extensively utilized in both 
preclinical and clinical trials in various infectious diseases 
[192,193]. However, the way in which MSCs exert their 
beneϐicial effects to control inϐlammation and prolong 
survival in septic conditions remains unclear [194]. ECVs of 
MSCs exert therapeutic effects that are similar to MSCs and 
they can protect against sepsis-induced organ dysfunction 
[193]. In animal studies, the use of ECVs derived from BM-
MSCs was associated with less organ damage in comparison to 
ECVs derived from MSCs obtained from other sources [195]. 
Additionally, ECVs derived from MSCs have shown superior 
safety proϐiles and the ability to be stored safely without loss 
of function compared to the parent cells. Therefore, MSC-ECVs 
may be used as a novel alternative to MSC-based therapy in 
sepsis [193]. 

Several studies have shown that MSCs are recruited 
at the periphery of tuberculous granulomas that harbor 
Mycobacterial Tuberculosis (MTB) bacilli and that MTB 
uses MSCs as a niche to evade host protective immunity 
surveillance mechanisms and to establish dormancy [196-
199]. MSCs help MTB organisms to tolerate and even resist 
treatment with antiTB drugs [197,200]. MSCs have emerged 
as a ϐifth element capable of regulating immune responses 
during TB infection [201]. MSCs play a role in the dormancy 
and reactivation of MTB and in the capacity of MTB to evade 
host immune responses [202,203]. Transplantation of MSCs 
and their exosomes have been used in the treatment of MDR-
TB. MSCs have been used in 3 clinical trials that included 
135 patients to treat MDR-TB and extensively DR (XDR)-
TB [201,204]. The results of these studies were as follows: 
(1) MSCs induced clinical and radiological improvements in 
70% - 80% of patients; (2) MSC transplantation induced 
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persistent remission and even cure in 53% - 56% of patients; 
and (3) the addition of autologous MSC transplantation 
to conventional anti-TB therapy signiϐicantly enhanced 
the response rates in patients with MDR-TB and XDR-TB 
[205-207]. 

Five systematic reviews and meta-analyses; that included 
62 RCTs comprising 2316 patients; on the use of MSCs in the 
treatment of COVID-19 infection and its complications have 
shown the following results: (1) MSCs can reduce the mortality 
rates in patients with COVID-19 infection; (2) MSCs can 
induce remission of symptoms related to COVID-19 infection; 
(3) MSCs can reduce the severity of COVID-19 pneumonia; (4) 
MSCs can improve lung function and radiological appearances 
in patients with COVID-19 pneumonia; (5) MSCs can reduce 
the levels of C-reactive protein and interferon-gamma in 
patients with severe COVID-19 infection; and (6) MSCs can 
reduce the duration of hospitalization and the requirement 
for invasive mechanical ventilation; [208-212]. Additionally, 
the included RCTs showed safety of MSC therapy in COVID-19 
infection without an increase in the incidence of adverse 
effects [208-211]. 

Use of mesenchymal stem cells in the treatment of
skin disorders: Stem cells are present in different locations 
in the skin; interfollicular epidermis, hair follicles, dermis, 
and adipose tissue; in order to maintain normal skin 
homeostasis and they are involved in tissue repair and 
skin regeneration during injury [213]. Several studies have 
demonstrated the involvement of MSCs in the pathogenesis 
of certain skin disorders such as psoriasis [214]. Due to their 
immunomodulatory, anti-inϐlammatory, antimicrobial, and 
regenerative capabilities, MSCs can be used in the treatment of 
various congenital, acquired, inϐlammatory, and autoimmune 
skin diseases [214]. Two systematic reviews and several other 
studies have shown that MSCs obtained from various sources 
including AT and their secretome; ECVs and exosomes; have 
been used in the treatment of several skin disorders including 
psoriasis; vitiligo; epidermolysis bullosae; atopic dermatitis; 
scarring, androgenic, and areata alopecia; skin ϐibrosis due to 
aging, burns and scelomyxedema; Merkel cell carcinoma; and 
cutaneous photoprotection, wound healing, and promotion of 
hair growth [213-218]. 

Mesenchymal stem cells in regenerative medicine 
and musculoskeletal disorders: Advances in isolation, 
culture, differentiation, and expansion techniques for 
MSCs have enabled their large-scale therapeutic utilization 
[60,219]. The following properties make MSCs optimal for 
tissue regeneration: (1) immunomodulatory capacity to 
alleviate abnormal immune responses; (2) paracrine or 
autocrine functions that generate growth factors; (3) the 
ability to differentiate into target cells; (4) anti-inϐlammatory 
and immunosuppressive properties; (5) migration to the 
areas having tissue injury; and (6) anti-aging, reconstructive, 
and wound healing potentials [60,219,220]. As a result of 5 

decades of research and investigations, MSCs have emerged 
as a versatile and frequently utilized cell source in the ϐields of 
tissue engineering and regenerative medicine [221]. Studies 
in regenerative medicine have shown: (1) administration of 
MSCs in the treatment of bone and heart diseases appears 
to be effective, useful, and broadly established; (2) several 
clinical trials have reported the value of both autologous 
and allogeneic MSCs in tissue formation; (3) no signiϐicant 
association was established between the use of MSCs and 
cancer or infections; (4) intravenous (IV) route has been 
established as the optimal route of administration of MSCs 
and doses between 1 x 106 and 2 x 108 cell/kg body weight; 
and (5) repeated administration of MSCs is more beneϐicial 
than single injection [60]. 

Studies suggest that expanded MSCs have multiple 
therapeutic effects on musculoskeletal disorders that can be 
applied in bone regeneration, restoration of cartilage defects, 
and treatment of OA, spinal fusion, disc regeneration, and 
tendon repair [222]. MSC-related osteobiologic products 
are available either in the market or in development [222]. 
Several approaches using MSCs for regenerating damaged 
periodontium are under study with variable degrees of clinical 
applications [223]. 

Autologous MSCs represent the primary source considered 
safe for transplantation and minimization of immunological 
risk despite the lack of documented complaints regarding 
allogeneic MSC-based therapies [220]. However, MSCs 
have been shown to be able to survive and engraft in 
allogeneic recipients [222]. Scaffold; materials that have 
been engineered to cause desirable cellular interactions to 
contribute to the formation of new functional tissues; have 
the following advantages: (1) they provide the environment 
and stimulation of MSCs to proliferate and differentiate, and 
(2) they enhance the therapeutic effects of MSCs as they are 
loaded with the required induction factors [220]. Despite the 
current challenges, MSC-based tissue engineering represents 
a promising clinical strategy in the ϐield of regenerative 
medicine. However, improving the cultural environment 
of MSCs and selecting appropriate scaffolds and induction 
factors are essential components of MSC therapy [220,221]. 

With high expectations, many ongoing clinical trials are 
investigating the safety and efϐicacy of MSCs in the treatment 
of arthritic diseases [224]. Over the last few decades, MSCs 
have been extensively explored as an emerging technique for 
the treatment of OA. However, therapeutic efϐicacy depends 
on a number of factors including the source of MSCs and the 
technique used in the treatment of OA [225]. However, studies 
on OA have shown positive clinical outcomes and improvement 
of joint function, pain level, and quality of life without serious 
adverse events [224]. MSCs may limit cartilage degeneration 
in OA by interfering with cellular immunity and secreting a 
number of active chemicals [225]. 
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Mesenchymal stem cells derived from induced 
pluripotent stem cells

Studies have shown that conventional tissue-derived 
MSCs are heterogeneous in nature as they have donor-speciϐic 
and tissue-speciϐic differences such as age, sex, and tissue 
source which limit their proliferative capacity and lead to 
inconsistent long-term therapeutic outcomes [226-228]. Due 
to the clinical potential of MSCs, there has been considerable 
interest in the generation of functional MSC preparations from 
induced pluripotent stem cells (iPSCs) [229,230]. iPSCs can 
differentiate through several techniques including: growth 
factor induction, three-dimensional cell culture, biomaterials, 
and epigenetics into induced MSCs (iMSCs) [227,228]. 
Currently, iPSCs represent a new reliable source to generate 
MSCs from iPSCs (iMSCs) from heterogeneous and well-
characterized cell lines and are now regarded as a potential 
source of unlimited standardized high-quality cells for 
therapeutic applications in regenerative medicine [229,230]. 
Studies have shown that: (1) irrespective of donor age and 
cell source, iMSCs acquire a rejuvenation gene signature thus 
overcoming the age-associated drawbacks of native MSCs, 
and (2) iMSCs have speciϐic features such as their single-cell 
clone origins as well as deϐined and controllable cultural 
conditions for their derivation and proliferation [231-233]. 
Autologous iMSCs represent a unique source of standardized 
cellular therapy that can be used to fulϐill unmet clinical needs 
and to overcome most of the obstacles still facing the broad 
clinical application of MSCs as advanced medicinal products 
[226,233-237]. Recent studies have shown that, compared 
to adult MSCs and UC-MSCs, iMSCs have demonstrated 
superior immunosuppressive capacity and clinical superiority 
when applied in tissue regeneration such as wound healing 
[226,228,234,235,237]. Compared to adult MSCs, exosomes 
derived from iMSCs have shown superior therapeutic quality 
with enhanced growth proliferation and migration in tissue 
regeneration [228,236]. 

Mesenchymal stem cells as advanced therapeutic 
medicinal products and their approvals for clinical use

Stem cell research has resulted in the emergence of 
cell-based therapies for disorders that are resistant to 
conventional drugs and therapies, and these cell therapies are 
considered under the category of an Advanced Therapeutic 
Medicinal Product (ATMP) [238]. ATMPs are innovative 
medicinal products, developed mainly as individualized and 
patient-speciϐic treatments, and represent new opportunities 
for diseases characterized by unmet medical needs, 
including rare, genetic and neurodegenerative disorders, 
hematological malignancies, cancer, AIDs, and inϐlammatory 
conditions [239]. Since ATMPs often target serious diseases, 
the industry and authorities are interested in providing 
treatment to patients in a timely manner through optimized 
and expedited regulatory pathways [240]. The FDA in the USA 
and the European Medicines Agency (EMA) devised a new 

strategy in 2017 with the aim of unifying the standards for 
the development of ATMPs such that it is easy to exchange 
information at the international level [238]. Various diseases 
have been treated by MSCs in animal models and hundreds 
of human clinical trials related to the potential beneϐits of 
MSCs are in progress [241]. Autologous MSCs can be affected 
by the disease status of patients and this compromises their 
clinical utilization. Consequently, allogeneic therapy seems 
to be the most cost-effective method [241,242]. Standardized 
procedures based on instrumented single-use bioreactors 
have been shown to provide billions of MSCs with consistent 
product quality and to be superior to traditional expansions in 
planar cultivation systems [242,243]. Currently, more than 27 
human MSC-derived therapeutics are currently commercially 
available [243]. However, the immunomodulatory and anti-
inϐlammatory properties of UC-MSCs, associated with fewer 
ethical, availability, and safety issues, position UCMSCs as 
promising active substances to develop medicinal products 
to treat immune and inϐlammatory diseases. Since 2007, UC-
MSC-based products have been classiϐied as ATMP according 
to the European Regulation 1394/2007/EC [244]. 

Currently, there is no FDA-approved MSC therapy on the 
market in the USA [133]. However, regulatory authorities 
have already approved MSC therapies for several clinical 
conditions including GVHD in Japan, Canada, and New Zeeland, 
perianal ϐistula due to Crohn’s disease in Europe, and critical 
limb ischemia in India [137,245-247]. In the year 2018, the 
EMA authorized the ϐirst marketing of allogeneic AT-derived 
MSCs for the treatment of complex perianal ϐistulas in Crohn’s 
disease and this represented a breakthrough in the ϐield of 
MSC therapy [248]. Due to the complexity of the production 
process of MSCs, the prices of MSC medicinal products have 
been reported to range between 25,000 and 40,000 US dollars 
per dose of MSCs [249]. Nevertheless, the development of 
enhanced MSC products of clinical relevance in a cost-effective 
manner holds the potential to offer therapeutic solutions with 
fewer adverse effects compared to the drugs that are currently 
available for the treatment of inϐlammatory and autoimmune 
disorders [250]. 

Safety and effi  cacy of mesenchymal stem cell therapies

Eleven systematic reviews and meta-analyses that 
included 266 studies; 105 of them were RCTs; on the 
clinical utilization of MSCs in more than 34 different disease 
conditions revealed the safety of MSC therapies in general, 
with few and tolerable adverse effects, regardless of the source 
or the route of administration of MSCs [147,174,177,208,
251-258]. 

24 systematic reviews and meta-analyses that included 
445 studies; 69 of them were RCTs; on the clinical utilization 
of MSCs in 47 different disease conditions; including 
autoimmune, infectious, liver, cardiac, and neurological 
disorders; revealed the efϐicacy of MSC therapies in general 
with improvement in clinical status and improvement in 
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laboratory indices reϐlecting disease activity regardless the 
source, the dose, or the route of administration of MSCs [147-
150,176,177,208,223,254, 256-269]. 

Challenges facing the clinical utilization of 
mesenchymal stem cells 

There are several challenges that face the clinical 
application of MSCs and these include: (1) safety issues 
related to the immediate and late adverse events such as: 
aggravation of arthritis, promotion of tumor growth and 
metasteses, and transmission of infectious diseases; (2) 
clinical grade production of MSCs requires large numbers of 
cells so in vitro expansion of MSCs is required and that MSCs 
which are used in clinical trials must be manufactured under 
the conditions required by the good manufacturing practice; 
(3) quality control measures covering all aspects including: 
cell production and harvest, viability and phenotype testing, 
oncogenicity tests, endotoxin assays, timing of administration, 
cell dose and schedule of administration, engraftment of 
MSCs, sources of MSCs (peripheral blood versus BM versus AT 
versus UC), autologous versus allogeneic transplantation, use 
of certain products such as ECVs of MSCs, donor related issues 
such as age and comorbidities, and use of fresh versus frozen 
and thawed MSCs; (4) in the period of clinical transition, 
plenty of work is still needed to: (a) increase knowledge on 
mechanisms involved in development, homeostasis, and tissue 
repair, (b) provide new tools to implement the efϐicacy of trials 
on MSC therapy, and (c) implement stringent regulations, 
standards, and protocols to cover all stages of MSCbased 
therapies including: isolation, ex vivo expansion, culture, 
storage, shipment, and administration; (5) performance of 
more RCTs and prospective studies to determine the optimal 
conditions of MSC therapy; (6) development of more robust 
pharmacodynamic, pharmacokinetic models that need to be 
applied in different clinical situations and to study failure of 
therapy and resistance to treatment; (7) stemness stability, 
and immunocompatibility; (8) the high economic costs of MSC 
therapies; (9) heterogeneity and limited expansion of MSCs; 
(10) requirement of inϐlammatory environment to induce 
immunosuppression; (11) loss of extracellular matrix upon 
delivery; (12) deprivation of nutrients and oxygen at the 
recipient site; and (13) linking research teams, cell therapy 
laboratories, and clinical teams in an integrated network 
[6,21,129,130,133,270-278].

Conclusions and future directions
Recently, the clinical applications of MSCs have rapidly 

expanded to include: AIDs; HSCT; several viral, bacterial, 
fungal, and parasitic infections and their complications; skin, 
pulmonary, and cardiovascular disorders; neurodegenerative, 
musculoskeletal and eye diseases; as well as regenerative 
medicine. The safety and efϐicacy of MSCs have been well 
illustrated in several clinical trials, systematic reviews, and 
meta-analyses. 

Genetic engineering as well as the use of iMSCs and speciϐic 
products of MSCs such as ECVs and exosomes have further 
improved their clinical efϐicacy and decreased their adverse 
effects including predisposition to cancer and infections. 

The use of speciϐic sources of MSCs, the administration 
of MSCs through certain routes, and the use of certain stem 
cell doses are expected to produce more fruitful short-term 
as well as long-term outcomes. Uniϐication of preparation 
and administration protocols and implementation of strict 
regulations, standards, and quality control measures will result 
in the elimination of most of the remaining challenges that 
face the widespread utilization of MSCs in the clinical arena. 
The performance of more RCTs and multicenter prospective 
studies will ultimately determine the optimal conditions of 
MSC therapies in various acute and chronic diseases.
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